
Concept explainers
Draw structures of the following derivatives.
- a. the 2,4-dinitrophenylhydrazone of benzaldehyde
- b. the semicarbazone of cyclobutanone
- c. cyclopropanone oxime
- d. the ethylene acetal of hexan-3-one
- e. acetaldehyde dimethyl acetal
- f. the methyl hemiacetal of formaldehyde
- g. the (E) isomer of the ethyl imine of propiophenone
- h. the hemiacetal form of 5-hydroxypentanal
(a)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 1.
Explanation of Solution
The given derivative is 2,4-dinitrophenylhydrazone of benzaldehyde.
The 2,4-dinitrophenylhydrazine is treated with benzaldehyde to form a 2,4-dinitrophenylhydrazone derivative.
The structure of 2,4-dinitrophenylhydrazone of benzaldehyde is given as,
Figure 1
(b)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 2.
Explanation of Solution
The given derivative is semicarbazone of cyclobutanone.
The cyclobutanone is treated with semicarbazide to form a semicarbazone derivative.
The structure of semicarbazone of cyclobutanone is given as,
Figure 2
(c)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 3.
Explanation of Solution
The given derivative is cyclopropanone oxime.
The cyclopropanone is treated with hydroxylamine to form an oxime.
The structure of cyclopropanone oxime is given as,
Figure 3
(d)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 4.
Explanation of Solution
The given derivative is ethylene acetal of hexan-3-one.
The ethylene glycol is treated with hexan-3-one to form ethylene acetal of hexan-3-one.
The structure of ethylene acetal of hexan-3-one is given as,
Figure 4
(e)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 5.
Explanation of Solution
The given derivative is acetaldehyde dimethyl acetal.
The acetaldehyde is treated with two moles of ethyl alcohol to form acetaldehyde dimethyl acetal.
The structure of acetaldehyde dimethyl acetal is given as,
Figure 5
(f)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 6.
Explanation of Solution
The given derivative is methyl hemiacetal of formaldehyde.
The structure of hemiacetal of formaldehyde is given as,
Figure 6
(g)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 7.
Explanation of Solution
The given derivative is (E)-isomer of the ethyl imine of propiophenone.
The propiophenone is treated with ethyl amine to form an ethyl imine derivative.
The structure of (E)-isomer of the ethyl imine of propiophenone is given as,
Figure 7
(h)

Interpretation:
The structure of the given derivative is to be drawn.
Concept introduction:
Ketones and aldehydes show different types of reactions which results to form many different products. The nucleophilic addition reactions are the common reactions, which form products like imines, diols, alcohols, cyanohydrins, and alkenes.
Answer to Problem 18.37SP
The structure of the given derivative is shown in Figure 8.
Explanation of Solution
The given derivative is hemiacetal of 5-hydroxypentanal.
The structure of hemiacetal of 5-hydroxypentanal is given as,
Figure 8
Want to see more full solutions like this?
Chapter 18 Solutions
ORGANIC CHEMISTRY
- PLEASE HELP! URGENT!arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forwardA mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forward
- How many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forwardHow many chiral carbons are in the molecule? Farrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole



