EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100454897
Author: Jewett
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.37P
To determine
The fundamental resonant frequency of the bird’s trachea.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The windpipe of one typical whooping crane is 5.00 feet long. What is the fundamental resonant frequency of the bird’s trachea, modeled as a narrow pipe closed at one end? Assume a temperature of 37°C.
The windpipe of a typical whooping crane is about 5.0 ft. long. What is the lowest resonant frequency of this pipe, assuming it is closed at one end? Assume a temperature of 37°C.
The windpipe of one typical whooping crane is 4.1 feet long. What is the fundamental resonant frequency of the bird's trachea, modeled as a narrow pipe closed at one end?
(Assume a temperature of 34°C.)
Hz
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 18 - Prob. 18.1QQCh. 18 - Consider the waves in Figure 17.8 to be waves on a...Ch. 18 - When a standing wave is set up on a string fixed...Ch. 18 - Prob. 18.4QQCh. 18 - Balboa Park in San Diego has an outdoor organ....Ch. 18 - In figure OQ18.1 (page 566), a sound wave of...Ch. 18 - A string of length L, mass pet unit length , and...Ch. 18 - In Example 18.1, we investigated an oscillator at...Ch. 18 - Prob. 18.4OQCh. 18 - A flute has a length of 58.0 cm. If the speed of...
Ch. 18 - When two tuning forks are sounded at the same...Ch. 18 - A tuning fork is known to vibrate with frequency...Ch. 18 - An archer shoots an arrow horizontally from the...Ch. 18 - As oppositely moving pulses of the same shape (one...Ch. 18 - Prob. 18.10OQCh. 18 - Suppose all six equal-length strings of an...Ch. 18 - Assume two identical sinusoidal waves are moving...Ch. 18 - Prob. 18.1CQCh. 18 - When two waves interfere constructively or...Ch. 18 - Prob. 18.3CQCh. 18 - What limits the amplitude of motion of a real...Ch. 18 - Prob. 18.5CQCh. 18 - An airplane mechanic notices that the sound from a...Ch. 18 - Despite a reasonably steady hand, a person often...Ch. 18 - Prob. 18.8CQCh. 18 - Does the phenomenon of wave interference apply...Ch. 18 - Two waves are traveling in the same direction...Ch. 18 - Two wave pulses A and B are moving in opposite...Ch. 18 - Two waves on one string are described by the wave...Ch. 18 - Two pulses of different amplitudes approach each...Ch. 18 - A tuning fork generates sound waves with a...Ch. 18 - The acoustical system shown in Figure OQ18.1 is...Ch. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Two traveling sinusoidal waves are described by...Ch. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Two identical sinusoidal waves with wavelengths of...Ch. 18 - Two identical loudspeakers 10.0 m apart are driven...Ch. 18 - Prob. 18.14PCh. 18 - Two sinusoidal waves traveling in opposite...Ch. 18 - Verify by direct substitution that the wave...Ch. 18 - Two transverse sinusoidal waves combining in a...Ch. 18 - A standing wave is described by the wave function...Ch. 18 - Two identical loudspeakers are driven in phase by...Ch. 18 - Prob. 18.20PCh. 18 - A string with a mass m = 8.00 g and a length L =...Ch. 18 - The 64.0-cm-long string of a guitar has a...Ch. 18 - The A string on a cello vibrates in its first...Ch. 18 - A taut string has a length of 2.60 m and is fixed...Ch. 18 - A certain vibrating string on a piano has a length...Ch. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - In the arrangement shown in Figure P18.27, an...Ch. 18 - In the arrangement shown in Figure P17.14, an...Ch. 18 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 18 - Review. A sphere of mass M is supported by a...Ch. 18 - Prob. 18.31PCh. 18 - Review. A solid copper object hangs at the bottom...Ch. 18 - Prob. 18.33PCh. 18 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 18 - An earthquake can produce a seiche in a lake in...Ch. 18 - High-frequency sound can be used to produce...Ch. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - Calculate the length of a pipe that has a...Ch. 18 - The overall length of a piccolo is 32.0 cm. The...Ch. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 18.42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 18.44PCh. 18 - Prob. 18.45PCh. 18 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 18 - Prob. 18.47PCh. 18 - Prob. 18.48PCh. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - Two adjacent natural frequencies of an organ pipe...Ch. 18 - Why is the following situation impossible? A...Ch. 18 - A student uses an audio oscillator of adjustable...Ch. 18 - An aluminum rod is clamped one-fourth of the way...Ch. 18 - Prob. 18.55PCh. 18 - Prob. 18.56PCh. 18 - In certain ranges of a piano keyboard, more than...Ch. 18 - Prob. 18.58PCh. 18 - Review. A student holds a tuning fork oscillating...Ch. 18 - An A-major chord consists of the notes called A,...Ch. 18 - Suppose a flutist plays a 523-Hz C note with first...Ch. 18 - A pipe open at both ends has a fundamental...Ch. 18 - Prob. 18.63APCh. 18 - Two strings are vibrating at the same frequency of...Ch. 18 - Prob. 18.65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - The fret closest to the bridge on a guitar is 21.4...Ch. 18 - Prob. 18.68APCh. 18 - A quartz watch contains a crystal oscillator in...Ch. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 18.71APCh. 18 - Two speakers are driven by the same oscillator of...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Review. The top end of a yo-yo string is held...Ch. 18 - On a marimba (Fig. P18.75), the wooden bar that...Ch. 18 - A nylon siring has mass 5.50 g and length L = 86.0...Ch. 18 - Two train whistles have identical frequencies of...Ch. 18 - Review. A loudspeaker at the front of a room and...Ch. 18 - Prob. 18.79APCh. 18 - Prob. 18.80APCh. 18 - Prob. 18.81APCh. 18 - A standing wave is set up in a string of variable...Ch. 18 - Two waves are described by the wave functions...Ch. 18 - Prob. 18.84APCh. 18 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 18 - Review. An object of mass m hangs in equilibrium...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Prob. 18.88CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forwardThe overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forward
- The ear canal can be thought of as a tube leading from the outer ear to the ear drum that is closed at one end. The typical length of an adult human ear canal is 2.5 cm. What is the fundamental resonant frequency of the ear canal? Assume the air inside it is at body temperature (37°C).arrow_forwardA 16-kg object hangs in equilibrium from a string of total length L = 5.0 m and linear mass density = 0.0028 kg/m. The string is wrapped around two light, frictionless pulleys that are separated by the distance d = 2.0 m (Fig. a). (a) Determine the tension in the string. N (b) (b) At what frequency must the string between the pulleys vibrate in order to form the standing-wave pattern shown in Figure (b)? Hzarrow_forwardAn open air column of length 1.60 m is in air at 23.8 °C. What is the frequency of the fourth harmonic?arrow_forward
- A pipe of length A has two open ends. Another pipe of length B has one open end and one closed end. The frequency of the first harmonic of both pipes is the same. What is (A/B)?arrow_forwardA pipe open at both ends has a length Of 0.88 m. If the temperature of the room is 291 k, caculate the frequency in Hz of the ņ= 3 harmonic. Take the speed of sound to be V= (331 m/s) J Far a13K 2.0arrow_forwardA well with vertical sides and water at the bottom resonates at 7.00 Hz and at no lower frequency. (The air filled portion of the well acts as a tube with one closed end and one open end.) The air in the well has a density of 1.10 kg/m^3 and a bulk modulus of 1.33×10^5 Pa. How far down in the well is the water surface?arrow_forward
- A well with vertical sides and water at the bottom resonates at 6.30 Hz and at no lower frequency. (The air-filled portion of the well acts as a tube with one closed end and one open end.) The air in the well has a density of 1.10 kg/m³ and a bulk modulus of 1.33 x 105 Pa. How far down in the well is the water surface? Number Unitsarrow_forwardA dinosaur called Parasaurolophus is a dinosaur (looks like a dinosaur with a single horn) thathas a hollow horn crest on its head. The 1.5 m long hollow tub inside of this crest hadconnections to the throat, leading some paleontologists to guess that the tube was used as aresonant chamber in vocalization. If you model this system as an open-closed system, what arethe first three resonant frequencies at 85 degrees F?arrow_forwardYou hold a speaker up to closed ended air column that is 1.20 m long. You slowly raise the frequency put out by the speaker until you hear the first resonant harmonic at a frequency of 69.0 Hz. What is the speed of sound in the tube? O 331 m/s O 20.7 m/s O 82.8 m/s O 350 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning