The Bay of Fundy, Nova Scotia, has the highest tides in the world. Assume in midocean and at the mouth of the bay the Moon’s gravity gradient and the Earth’s rotation make the water surface oscillate with an amplitude of a few centimeters and a period of 12 h 24 min. At the head of the bay, the amplitude is several meters. Assume the bay has a length of 210 km and a uniform depth of 36.1 m. The speed of long-wavelength water waves is given by v = g d , where d is the water’s depth. Argue for or against the proposition that the tide is magnified by standing-wave resonance.
The Bay of Fundy, Nova Scotia, has the highest tides in the world. Assume in midocean and at the mouth of the bay the Moon’s gravity gradient and the Earth’s rotation make the water surface oscillate with an amplitude of a few centimeters and a period of 12 h 24 min. At the head of the bay, the amplitude is several meters. Assume the bay has a length of 210 km and a uniform depth of 36.1 m. The speed of long-wavelength water waves is given by v = g d , where d is the water’s depth. Argue for or against the proposition that the tide is magnified by standing-wave resonance.
Solution Summary: The author explains that the natural frequency of the water sloshing in the bay agrees with that of lunar excitation, so person identifies the extra high tides as the amplified by resonance.
The Bay of Fundy, Nova Scotia, has the highest tides in the world. Assume in midocean and at the mouth of the bay the Moon’s gravity gradient and the Earth’s rotation make the water surface oscillate with an amplitude of a few centimeters and a period of 12 h 24 min. At the head of the bay, the amplitude is several meters. Assume the bay has a length of 210 km and a uniform depth of 36.1 m. The speed of long-wavelength water waves is given by
v
=
g
d
, where d is the water’s depth. Argue for or against the proposition that the tide is magnified by standing-wave resonance.
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.