![OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)](https://www.bartleby.com/isbn_cover_images/9781305864900/9781305864900_largeCoverImage.jpg)
(a)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To explain: The change in standard free energy for the given reaction
Given reaction
The relationship between
Above equation shows that, if the temperature remains constant then the free energy change will remains constant.
(b)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To explain: The change in free energy for the given reaction
Given reaction
The relationship between
Above equation shows that, if the value of reaction quotient changes then the value of free energy also change.
(c)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To explain: The spontaneity of the given reaction
Given reaction and information
Since, the value of equilibrium constant is very large, the given reaction is spontaneous.
(d)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To check: The given statement
Given statement
The given statement is not correct. At equilibrium the value of free energy is zero, but the value of standard free energy change is constant. Hence, the given statement is not true.
(e)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(e)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To check: The composition of the mixture at equilibrium
Given reaction
The value of equilibrium constant is very large, so at equilibrium the composition will mostly the product side
(f)
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(f)
![Check Mark](/static/check-mark.png)
Explanation of Solution
To give: The values of
Given reaction
For the reverse reaction,
At equilibrium, the value of free energy change is zero. The reaction mixture will mostly reactant side
The given reverse reaction is non-spontaneous.
Want to see more full solutions like this?
Chapter 18 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
- These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If a racemic molecule is made along the way, you need to draw both enantiomers and label the mixture as "racemic". All of the carbon atoms of the products must come from the starting material! ? H Harrow_forwardQ5: Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Clearly show stereochemistry by drawing the wedge-and-dashed bonds. Describe the relationship between each pair of the stereoisomers you have drawn.arrow_forwardClassify each pair of molecules according to whether or not they can participate in hydrogen bonding with one another. Participate in hydrogen bonding CH3COCH3 and CH3COCH2CH3 H2O and (CH3CH2)2CO CH3COCH3 and CH₂ CHO Answer Bank Do not participate in hydrogen bonding CH3CH2OH and HCHO CH3COCH2CH3 and CH3OHarrow_forward
- Nonearrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 4A (g) + 2B (g) → 2C (g) + 7D (g) AHrxn =?kJ Substance AH in kJ/mol A (g) - 20.42 B (g) + 32.18 C (g) - 72.51 D (g) - 17.87arrow_forwardDetermine ASran for Zn(s) + 2HCl(aq) = ZnCl2(aq) + H2(aq) given the following information: Standard Entropy Values of Various Substance Substance So (J/mol • K) 60.9 Zn(s) HCl(aq) 56.5 130.58 H2(g) Zn2+(aq) -106.5 55.10 CI (aq)arrow_forward
- 3) Catalytic hydrogenation of the compound below produced the expected product. However, a byproduct with molecular formula C10H12O is also formed in small quantities. What is the by product?arrow_forwardWhat is the ΔHorxn of the reaction? NaOH(aq) + HCl(aq) → H2O(l) + NaCl(aq) ΔHorxn 1= ________ kJ/molarrow_forward= +92kJ ΔΗ = +170kJ Use the following reactions: 2NH3(9) N2(g) + 3H2(g) → 11/N2(g) + 2H2O (1) → NO2(g) + 2H2(g) Determine the DH° of this reaction: NO2(g) + H2(g) → 2(g) → 2H2O(l) + NH3(9) ΔΗarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)