ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
13th Edition
ISBN: 9781264070077
Author: Chang
Publisher: INTER MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 18.139QP

The diagram here shows an electrolytic cell consisting of a Co electrode in a 2.0 M Co(NO3)2 solution and a Mg electrode in a 2.0 M Mg(NO3)2 solution. (a) Label the anode and cathode and show the half-cell reactions. Also label the signs (+ or −) on the battery terminals. (b) What is the minimum voltage to drive the reaction? (c) After the passage of 10.0 A for 2.00 h the battery is replaced with a voltmeter and the electrolytic cell now becomes a galvanic cell. Calculate Ecell. Assume volumes to remain constant at 1.00 L in each compartment.

Chapter 18, Problem 18.139QP, The diagram here shows an electrolytic cell consisting of a Co electrode in a 2.0 M Co(NO3)2

a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Half reactions; the anode and cathode have to be labelled.

Concept introduction:

Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).

Standard emf: Ecell0 is composed of a contribution from the anode and a contribution from the cathode is given by,

Ecello=EcathodeoEanodeo

Where both Ecathodeo and Eanodeo are the standard reduction potentials of the electrodes.

Thermodynamics of redox reactions:

The change in free-energy represents the maximum amount of useful work that can be obtained in a reaction: ΔG0=-nFEcell0

Relation between Ecell0 and equilibrium constant (K) of a redox reaction:

Ecell0=RTnFlnKwhereRisgasconstant(8.314J/K.mol)TisTemperatureinKelvinnisno.ofelectronstransferredinredoxreactionFisFaradayconstant(96500J/V.mol)Kisequilibriumconstant

Relation between ΔG0 and K:ΔG0=-RTlnK

Effect of concentration on cell Emf:

The mathematical relationship between the emf of galvanic cell and the concentration of reactants and products in a redox reaction under nonstandard-state conditions is,

ΔG=ΔG0+RTlnQwhere, ΔG0isstandardGibb'sfreeenergy            Qisreactionquotient.

As known ΔG0=-nFEcell0 and ΔG=-nFEcell, above expression can be written as,

ΔG=ΔG0+RTlnQ-nFEcell=-nFEcell0+RTlnQ

Dividing by –nF, the above equation becomes,

-nFEcellnF=-nFEcell0nF+RTlnQnFEcell=Ecell0RTnFlnQNernst equation

Nernst equation: The Nernst equation is used to calculate the cell voltage under nonstandard-state conditions.

Explanation of Solution

ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<, Chapter 18, Problem 18.139QP

Figure.1

For the given redox reactions,

In the galvanic cell, Oxidation occurs at anode and reduction occurs at cathode.

Therefore,

Anode (Oxidation): Co(s)Co2+(aq)+2e

Cathode (Reduction): Mg2+(aq)+2eMg(s)

b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The minimum voltage needed to drive the reaction has to be calculated.

Concept introduction:

Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).

Standard emf: Ecell0 is composed of a contribution from the anode and a contribution from the cathode is given by,

Ecello=EcathodeoEanodeo

Where both Ecathodeo and Eanodeo are the standard reduction potentials of the electrodes.

Explanation of Solution

The emf values for the two given half-reactions are,

Anode (Oxidation): Co(s)Co2+(aq)+2eEanode=+0.28V

Cathode (Reduction): Mg2+(aq)+2eMg(s)Ecathode=2.37V

Calculated standard emf for galvanic cell as follows,

Ecello=Ecathodeo+Eanodeo=(-2.37)V+(0.28)V=-2.09V

The minimum voltage needed to drive the reaction is +2.09V

c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The emf of a given galvanic cell has to be calculated.

Concept introduction:

Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).

Standard emf: Eocell is composed of a contribution from the anode and a contribution from the cathode is given by,

Ecello=EcathodeoEanodeo

Where both Ecathodeo and Eanodeo are the standard reduction potentials of the electrodes.

Effect of concentration on cell Emf:

The mathematical relationship between the emf of galvanic cell and the concentration of reactants and products in a redox reaction under nonstandard-state conditions is,

ΔG=ΔG0+RTlnQwhere, ΔG0isstandardGibb'sfreeenergy            Qisreactionquotient.

As known ΔG0=-nFEcell0 and ΔG=-nFEcell, above expression can be written as,

ΔG=ΔG0+RTlnQ-nFEcell=-nFEcell0+RTlnQ

Dividing by –nF, the above equation becomes,

-nFEcellnF=-nFEcell0nF+RTlnQnFEcell=Ecell0RTnFlnQNernst equation

Nernst equation: The Nernst equation is used to calculate the cell voltage under nonstandard-state conditions.

Explanation of Solution

Given: Current= 10.0 A; Time, t=2hr=2×60×60=7200sec

Convert Current into coulomb:

(Current)×(time)=no.ofCoulomb

As known, 1Ampere=1CoulombSec

(Current)=no.ofCoulombtimeno.ofCoulomb=(Current)(time)=(10.0C.Sec1)(7200sec)=72000C

Convert number of Coulombs into mole of electrons:

moleofe-=no.ofCoulombFaradayconstant=72000C96500Cmolee-=0.746molee-1

Convert mole of electrons into number of moles:

Co(s)Co2+(aq)+2eEanode=+0.28V

1 mole of Cobalt 2 mole of e-

‘X’of Cobalt = 0.746molee-1 moles of e-

Number of moles of Co=(1moleofCo)(0.746molee-1)2molofe=0.373molofCo

Therefore, no.of moles of Cobalt is 0.373molofCo

Assuming solution volumes of 1.00L, the concentration of Co2+ in solution after  2hours is 2.373 M, and the concentration of Mg2+ in solution after 2 hours is 1.627 M. we use the Nernst equation to solve for Ecell

Mg(s)+Co2+(aq)Mg2+(aq)+Co(s)

Calculation of non-standard emf value using Nernst equation:

The reaction quotient for the given reaction is, Q=[Mg2+][Co][Mg][Co2+]

The concentration of pure solids and pure liquids do not appear in the expression for Q.

Hence, the reaction quotient becomes, Q=[Mg2+][Co2+]

Substitute known constant values of R, T and F into Nernst equation becomes as follows,

Ecell=2.09V-(0.0257V)nln[Mg2+][Co2+]

The number of electrons transferred in the given redox reaction is TWO (n=2) and Ecell0=+2.09V

Ecell(+2.09V)-(0.0257V)2ln1.6272.373=(+2.09V)-(0.01285)ln(0.686)=(+2.09V)-(0.01285)(0.377)=(+2.09V)+0.00485=+2.095V

The emf of the given cell reaction is +2.095V

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<

Ch. 18.4 - Prob. 5PECh. 18.4 - Calculate the equilibrium constant for the...Ch. 18.4 - Prob. 2RCFCh. 18.4 - Prob. 3RCFCh. 18.5 - Prob. 6PECh. 18.5 - Prob. 7PECh. 18.5 - Consider the following cell diagram:...Ch. 18.5 - Calculate the cell voltage at 25C of a...Ch. 18.6 - How many Leclanch cells are contained in a 9-volt...Ch. 18.7 - Prob. 1RCFCh. 18.8 - An aqueous solution of Mg(NO3)2 is electrolyzed....Ch. 18.8 - A constant current is passed through an...Ch. 18.8 - What is the minimum voltage needed for the...Ch. 18.8 - Prob. 2RCFCh. 18.8 - In the electrolysis of molten CaCl2, a current of...Ch. 18 - Balance the following redox equations by the...Ch. 18 - Balance the following redox equations by the...Ch. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Describe the basic features of a galvanic cell....Ch. 18 - What is the function of a salt bridge? What kind...Ch. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Prob. 18.8QPCh. 18 - Use the information in Table 2.1, and calculate...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Calculate the standard emf of a cell that uses the...Ch. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Predict whether Fe3+ can oxidize I to I2 under...Ch. 18 - Which of the following reagents can oxidize H2O to...Ch. 18 - Consider the following half-reactions:...Ch. 18 - Predict whether the following reactions would...Ch. 18 - Which species in each pair is a better oxidizing...Ch. 18 - Which species in each pair is a better reducing...Ch. 18 - Consider the electrochemical reaction Sn2+ + X Sn...Ch. 18 - The Ecell for the following cell is 1.54 V at 25C:...Ch. 18 - Write the equations relating G and K to the...Ch. 18 - Prob. 18.22QPCh. 18 - Prob. 18.23QPCh. 18 - The equilibrium constant for the reaction...Ch. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard-state conditions, what spontaneous...Ch. 18 - Given that E = 0.52 V for the reduction...Ch. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - Referring to the arrangement in Figure 18.1,...Ch. 18 - Calculate the emf of the following concentration...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - Prob. 18.41QPCh. 18 - Galvanized iron is steel sheet that has been...Ch. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.44QPCh. 18 - What is the difference between a galvanic cell...Ch. 18 - Describe the electrolysis of an aqueous solution...Ch. 18 - The half-reaction at an electrode is...Ch. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.49QPCh. 18 - If the cost of electricity to produce magnesium by...Ch. 18 - One of the half-reactions for the electrolysis of...Ch. 18 - How many moles of electrons are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - In the electrolysis of an aqueous AgNO3 solution,...Ch. 18 - A steady current was passed through molten CoSO4...Ch. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - One of the half-reactions for the electrolysis of...Ch. 18 - A steady current of 10.0 A is passed through three...Ch. 18 - Industrially, copper metal can be purified...Ch. 18 - A Daniell cell consists of a zinc electrode in...Ch. 18 - A concentration cell is constructed having Cu...Ch. 18 - For each of the following redox reactions, (i)...Ch. 18 - The oxidation of 25.0 mL of a solution containing...Ch. 18 - The SO2 present in air is mainly responsible for...Ch. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Oxalic acid (H2C2O4) is present in many plants and...Ch. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - From the following information, calculate the...Ch. 18 - Consider a galvanic cell composed of the SHE and a...Ch. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Prob. 18.78QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - Prob. 18.80QPCh. 18 - Suppose you are asked to verify experimentally the...Ch. 18 - Prob. 18.82QPCh. 18 - An aqueous KI solution to which a few drops of...Ch. 18 - A piece of magnesium metal weighing 1.56 g is...Ch. 18 - Prob. 18.85QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - In a certain electrolysis experiment involving...Ch. 18 - Consider the oxidation of ammonia:...Ch. 18 - When an aqueous solution containing gold(III) salt...Ch. 18 - In an electrolysis experiment, a student passes...Ch. 18 - People living in cold-climate countries where...Ch. 18 - Given that...Ch. 18 - A galvanic cell with Ecell = 0.30 V can be...Ch. 18 - Shown here is a galvanic cell connected to an...Ch. 18 - Fluorine (F2) is obtained by the electrolysis of...Ch. 18 - A 300-mL solution of NaCl was electrolyzed for...Ch. 18 - Industrially, copper is purified by electrolysis....Ch. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Consider a galvanic cell consisting of a magnesium...Ch. 18 - A current of 6.00 A passes through an electrolytic...Ch. 18 - Prob. 18.101QPCh. 18 - Explain why most useful galvanic cells give...Ch. 18 - The table here shows the standard reduction...Ch. 18 - Consider a concentration cell made of the...Ch. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Zinc is an amphoteric metal; that is, it reacts...Ch. 18 - Use the data in Table 18.1 to determine whether or...Ch. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - A galvanic cell is constructed as follows. One...Ch. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.111QPCh. 18 - When 25.0 mL of a solution containing both Fe2+...Ch. 18 - Consider the Daniell cell in Figure 18.1. When...Ch. 18 - Use the data in Table 18.1 to show that the...Ch. 18 - Consider two electrolytic cells A and B. Cell A...Ch. 18 - A galvanic cell consists of a Mg electrode in a 1...Ch. 18 - The concentration of sulfuric acid in the...Ch. 18 - Consider a Daniell cell operating under...Ch. 18 - An electrolysis cell was constructed similar to...Ch. 18 - Prob. 18.120QPCh. 18 - Prob. 18.121QPCh. 18 - Prob. 18.122QPCh. 18 - A piece of magnesium ribbon and a copper wire are...Ch. 18 - The zinc-air battery shows much promise for...Ch. 18 - Calculate E for the reactions of mercury with (a)...Ch. 18 - Because all alkali metals react with water, it is...Ch. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Given the following standard reduction potentials,...Ch. 18 - Compare the pros and cons of a fuel cell, such as...Ch. 18 - Lead storage batteries are rated by ampere hours,...Ch. 18 - Use Equations (17.10) and (18.3) to calculate the...Ch. 18 - A construction company is installing an iron...Ch. 18 - A 9.00 102-mL 0.200 M MgI2 was electrolyzed. As a...Ch. 18 - Based on the following standard reduction...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - The nitrite ion (NO2) in soil is oxidized to...Ch. 18 - The diagram here shows an electrolytic cell...Ch. 18 - Fluorine is a highly reactive gas that attacks...Ch. 18 - Show a sketch of a galvanic concentration cell....Ch. 18 - The emf of galvanic cells varies with temperature...Ch. 18 - A concentration cell ceases to operate when the...Ch. 18 - It has been suggested that a car can be powered...Ch. 18 - Estimate how long it would take to electroplate a...Ch. 18 - The potential for a cell based on the standard...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY