MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months)
MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781305581159
Author: Nicholas J. Garber; Lester A. Hoel
Publisher: Cengage Learning US
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 16P
To determine

The initial trial asphalt content for different blends.

Expert Solution & Answer
Check Mark

Answer to Problem 16P

  4.65%,

  4.69%

  and44.45%

Explanation of Solution

Given information:

Nominal maximum sieve of each aggregate blend = 19 mm.

  MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months), Chapter 18, Problem 16P

Calculation:

For trial blend 1, we have:

The amount of asphalt binder absorbed by the aggregates is estimated

from Eq. 18.18 as

  Vba=Ps(1Va)PbGb+PsG se[1Gsb1Gse]

Where, Vba is the volume of absorbed binder, cm3/cm3 of mix,

  Pb is the percent of binder (assumed  0.05 ),

  Ps is the percent of aggregate (assumed 0.95 ),

  Gb is the specific gravity of binder (assumed 1.02 ),

  Gse is the effective specific gravity of the aggregate blend

  Gsb is the bulk specific gravity of the aggregate blend

  Va is thevolume of air voids (assumed 0.04 cm3/cm3 of mix ).

Substitute the values in the required equation, we have

  Vba=Ps( 1 V a ) P b G b + P s G se [1 G sb1 G se]Vba=0.95( 10.04) 0.05 1.02+ 0.95 2.765[12.69812.765]Vba=0.95( 0.96)0.049+0.3436[0.3710.362]Vba=0.9120.3926[0.009]Vba=0.0209.

Estimate the percent of effective asphalt binder by volume using theempirical expression given as follows:

  Vbe=0.176(0.0675)logSn

Where, Vbe is the volume of effective binder content,

  Sn is the nominal maximum sieve size of the total aggregate in the trial aggregate

gradation (mm).

Substitute the values in the required equation, we have

  Vbe=0.176(0.0675)log(19)Vbe=0.176(0.0675)(1.2788)Vbe=0.1760.0863.Vbe=0.0896.

Now, calculate the mass of aggregate by using the following formula:

  WS=Ps(1Va)PbGb+PsG se

Where, WS is the mass of aggregate

Substitute the values, we have

  WS=0.95( 10.04) 0.05 1.02+ 0.95 2.765WS=0.95( 0.96)0.049+0.3436WS=0.9120.3926WS=2.323grams.

A trial percentage of asphalt binder then is determined for each trial

aggregate blend using the following equation.

  Pbi=Gb(V be+V ba)(Gb( V be + V ba ))+Ws×100 where

Where, Pbi is the percent of binder by mass of mix.

Substitute the values, we have

  Pbi=1.02( 0.090+0.021)( 1.02( 0.090+0.021 ))+2.323×100Pbi=1.02( 0.111)( 1.02( 0.111 ))+2.323×100Pbi=0.113220.11322+2.323×100Pbi=11.3222.43622Pbi=4.647Pbi=4.65%.

For trial blend 2, we have:

The amount of asphalt binder absorbed by the aggregates is estimated

from Eq. 18.18 as

  Vba=Ps(1Va)PbGb+PsG se[1Gsb1Gse]

Where, Vba is the volume of absorbed binder, cm3/cm3 of mix,

  Pb is the percent of binder (assumed  0.05 ),

  Ps is the percent of aggregate (assumed 0.95 ),

  Gb is the specific gravity of binder (assumed 1.02 ),

  Gse is the effective specific gravity of the aggregate blend

  Gsb is the bulk specific gravity of the aggregate blend

  Va is the volume of air voids (assumed 0.04 cm3/cm3 of mix ).

Substitute the values in the required equation, we have

  Vba=Ps( 1 V a ) P b G b + P s G se [1 G sb1 G se]Vba=0.95( 10.04) 0.05 1.02+ 0.95 2.766[12.69812.766]Vba=0.95( 0.96)0.049+0.3434[0.3710.361]Vba=0.9120.3924[0.01]Vba=0.023.

Estimate the percent of effective asphalt binder by volume using the empirical expression given as follows:

  Vbe=0.176(0.0675)logSn

Where, Vbe is the volume of effective binder content,

  Sn is the nominal maximum sieve size of the total aggregate in the trial aggregate

gradation (mm).

Substitute the values in the required equation, we have

  Vbe=0.176(0.0675)log(19)Vbe=0.176(0.0675)(1.2788)Vbe=0.1760.0863.Vbe=0.0896.

Now, calculate the mass of aggregate by using the following formula:

  WS=Ps(1Va)PbGb+PsG se

Where, WS is the mass of aggregate

Substitute the values, we have

  WS=0.95( 10.04) 0.05 1.02+ 0.95 2.766WS=0.95( 0.96)0.049+0.3434WS=0.9120.3924WS=2.324grams.

A trial percentage of asphalt binder then is determined for each trial

aggregate blend using the following equation.

  Pbi=Gb(V be+V ba)(Gb( V be + V ba ))+Ws×100 where

Where, Pbi is the percent of binder by mass of mix.

Substitute the values, we have

  Pbi=1.02( 0.090+0.022)( 1.02( 0.090+0.022 ))+2.324×100Pbi=1.02( 0.112)( 1.02( 0.112 ))+2.324×100Pbi=0.114240.11424+2.324×100Pbi=11.4242.43824Pbi=4.685Pbi=4.69%.

For trial blend 3, we have:

The amount of asphalt binder absorbed by the aggregates is estimated

from Eq. 18.18 as

  Vba=Ps(1Va)PbGb+PsG se[1Gsb1Gse]

Where, Vba is the volume of absorbed binder, cm3/cm3 of mix,

  Pb is the percent of binder (assumed  0.05 ),

  Ps is the percent of aggregate (assumed 0.95 ),

  Gb is the specific gravity of binder (assumed 1.02 ),

  Gse is the effective specific gravity of the aggregate blend

  Gsb is the bulk specific gravity of the aggregate blend

  Va is the volume of air voids (assumed 0.04 cm3/cm3 of mix ).

Substitute the values in the required equation, we have

  Vba=Ps( 1 V a ) P b G b + P s G se [1 G sb1 G se]Vba=0.95( 10.04) 0.05 1.02+ 0.95 2.764[12.71112.764]Vba=0.95( 0.96)0.0490+0.3437[0.36880.3618]Vba=0.9120.3927[0.0070]Vba=0.01626.Vba=0.0163.

Estimate the percent of effective asphalt binder by volume using the empirical expression given as follows:

  Vbe=0.176(0.0675)logSn

Where, Vbe is the volume of effective binder content,

  Sn is the nominal maximum sieve size of the total aggregate in the trial aggregate

gradation (mm).

Substitute the values in the required equation, we have

  Vbe=0.176(0.0675)log(19)Vbe=0.176(0.0675)(1.2788)Vbe=0.1760.0863.Vbe=0.0896.

Now, calculate the mass of aggregate by using the following formula:

  WS=Ps(1Va)PbGb+PsG se

Where, WS is the mass of aggregate

Substitute the values, we have

  WS=0.95( 10.04) 0.05 1.02+ 0.95 2.764WS=0.95( 0.96)0.049+0.3437WS=0.9120.3927WS=2.322grams.

A trial percentage of asphalt binder then is determined for each trial

aggregate blend using the following equation.

  Pbi=Gb(V be+V ba)(Gb( V be + V ba ))+Ws×100 where

Where, Pbi is the percent of binder by mass of mix.

Substitute the values, we have

  Pbi=1.02( 0.090+0.016)( 1.02( 0.090+0.016 ))+2.322×100Pbi=1.02( 0.106)( 1.02( 0.106 ))+2.322×100Pbi=0.108120.10812+2.324×100Pbi=108.122.43212Pbi=44.45%.

Conclusion:

Therefore, the initial trial asphalt content for1st, 2nd and 3rd blends is as follows 4.65%, 4.69% and 44.45% respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 3 (15pt) A traffic signal control is being designed for a four-leg intersection on a divided highway with the characteristics show in the table below. Determine an appropriate length of the yellow interval for each approach. (assuming the average vehicle length is 20ft, and the perception-reaction time is 1.0 sec, and deceleration rate of 11.2ft/sec²) Median width (ft) Number of 12ft lanes on each approach Design speed (mph) Grade North South approaches East West Approaches 18 3 45 0 10 2 35 3.5 SPEED LIMIT 45 18ft SPEED LIMIT 45 5
Hi! Can you help me compute the concrete and masonry works for this structure based on the attached elevation drawing?The image shows the side view of a small building with labeled sections, wall openings (windows), and dimensions in centimeters. Specifically, I need help computing the following: For Concrete Works: Volume of concrete for footings, columns, and slab (if applicable) For Masonry Works (CHB Walls): Total wall area (excluding window openings) Number of CHBs required (based on 0.4 m x 0.2 m CHB) Cement and sand for block laying Cement, sand, and gravel for core filling (if reinforced) Cement and fine sand for plastering (both sides) Rebars needed for CHB reinforcement (if any) Please base it on the drawing dimensions. Let me know if additional assumptions or standards are needed (e.g., CHB size, mix ratio, thickness of plaster). Thank you!
Hi! Can you help me compute the Masonry Works for the 3rd Floor only based on this image?This image shows all my completed concrete, rebar, slab, and formwork computations for the 3rd floor of a 3-storey residential building. Specifically, I need the following for CHB walls: Quantity of CHB Cement & sand for block laying (mortar) Cement, sand, and gravel for core filling Cement & fine sand for plastering Cement, sand, and gravel for CHB wall footing Number and length of vertical & horizontal rebars (10mm or as required)
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Aggregates: Properties; Author: nptelhrd;https://www.youtube.com/watch?v=49yGZYeokKM;License: Standard YouTube License, CC-BY