Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated.
Concept introduction:
Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as,
Wmax=ΔG°
The relationship between Gibbs free energy change and cell potential is given by the formula,
ΔG°=−nFE°cell
The relation between
ΔG°,
ΔH° and
ΔS° is given as,
ΔG°=ΔH°−TΔS°
To determine: The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature.
The relation obtained from the given equations is,
Identify the starting material in the following reaction. Click the "draw structure" button to launch the
drawing utility.
draw structure ...
[1] 0 3
C10H18
[2] CH3SCH3
H
In an equilibrium mixture of the formation of ammonia from nitrogen and hydrogen, it is found that
PNH3 = 0.147 atm, PN2 = 1.41 atm and Pн2 = 6.00 atm. Evaluate Kp and Kc at 500 °C.
2 NH3 (g) N2 (g) + 3 H₂ (g)
K₂ = (PN2)(PH2)³ = (1.41) (6.00)³ = 1.41 x 104
What alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the
"draw structure" button to launch the drawing utility.
and two equivalents of CH2=O
draw structure ...
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.