Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated.
Concept introduction:
Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as,
Wmax=ΔG°
The relationship between Gibbs free energy change and cell potential is given by the formula,
ΔG°=−nFE°cell
The relation between
ΔG°,
ΔH° and
ΔS° is given as,
ΔG°=ΔH°−TΔS°
To determine: The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature.
The relation obtained from the given equations is,
The number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?
For the single step reaction: A + B → 2C + 25 kJ
If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state.
In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.
How many grams of C are combined with 3.75 ✕ 1023 atoms of H in the compound C5H12?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.