The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
Solution Summary: The author compares the amount of electrical energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum, and explains the economic feasibility of recycling Aluminum cans.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated.
Concept introduction:
For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion.
To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans.
The amount of electrical energy required to produce Aluminum from Aluminum oxide is
54×106J.
The amount of energy required to melt Aluminum metal is
395.9×103J.
The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide.
The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
This is a synthesis question. Why is this method wrong or worse than the "correct" method? You could do it thiss way, couldn't you?
Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if
any:
(CH3)3CCNO
NCO-
HN3
[CH3OH2]*
What are the major products of the following reaction?
Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.