
Chemistry: A Molecular Approach Selected Solutions Manual, Books a la Carte Edition
4th Edition
ISBN: 9780134554259
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 111E
Interpretation Introduction
Interpretation: Amongst the given statements, the true statement is to be determined.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a
4 shows scanning electron microscope (SEM) images of extruded
actions of packing bed for two capillary columns of different diameters,
al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the
same stationary phase, spherical particles with 1-um diameter.
A) When the columns were prepared, the figure shows that the column with
the larger diameter has more packing irregularities. Explain this observation.
B) Predict what affect this should have on band broadening and discuss your
prediction using the van Deemter terms.
C) Does this figure support your explanations in application question 33?
Explain why or why not and make any changes in your answers in light of
this figure.
Figure 4 SEM images of
sections of packed columns
for a) 750 and b) 30-um-i.d.
capillary columns.³
fcrip
= ↓ bandwidth Il temp
32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual
components of the van Deemter equation and consequently, band broadening?
Increase temperature
Longer column
Using a gas mobile phase
instead of liquid
Smaller particle stationary phase
Multiple Paths
Diffusion
Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.).
A) Predict whether decreasing the column inner diameters increase or decrease bandwidth.
B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or
decreasing bandwidth as a function of i.d. and justify your answer.
Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was
obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles.
35
20
H(um)
큰 20
15
90
0+
1500
100
75
550
01
02
594
05
μ(cm/sec)
30
15
10
Chapter 18 Solutions
Chemistry: A Molecular Approach Selected Solutions Manual, Books a la Carte Edition
Ch. 18 - Prob. 1SAQCh. 18 - Prob. 2SAQCh. 18 - Q3. Arrange the gases—F2, Ar, and CH3F—in order of...Ch. 18 - Q4. Calculate the change in entropy that occurs in...Ch. 18 - Q5. A reaction has a ΔHrxn = 54.2 kJ. Calculate...Ch. 18 - Prob. 6SAQCh. 18 - Q7. Use standard entropies to calculate for the...Ch. 18 - Q8. Use standard free energies of formation to...Ch. 18 - Q9. Find ΔG$$ for the reaction 2 A + B → 2 C from...Ch. 18 - Prob. 10SAQ
Ch. 18 - Prob. 11SAQCh. 18 - Prob. 12SAQCh. 18 - Prob. 13SAQCh. 18 - Prob. 14SAQCh. 18 - Prob. 15SAQCh. 18 - Prob. 16SAQCh. 18 - 1. What is the first law of thermodynamics, and...Ch. 18 - Prob. 2ECh. 18 - 3. What is a perpetual motion machine? Can such a...Ch. 18 - 4. Is it more efficient to heat your home with a...Ch. 18 - 5. What is a spontaneous process? Provide an...Ch. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - 16. Predict the spontaneity of a reaction (and the...Ch. 18 - 17. State the third law of thermodynamics and...Ch. 18 - 18. Why is the standard entropy of a substance in...Ch. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - 21. What are three different methods to calculate...Ch. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - 27. Which of these processes is spontaneous?
a....Ch. 18 - 28. Which of these processes are nonspontaneous?...Ch. 18 - 29. Two systems, each composed of two particles...Ch. 18 - 30. Two systems, each composed of three particles...Ch. 18 - 31. Calculate the change in entropy that occurs in...Ch. 18 - 32. Calculate the change in entropy that occurs in...Ch. 18 - 33. Calculate the change in entropy that occurs in...Ch. 18 - 34. Calculate the change in entropy that occurs in...Ch. 18 - 35. Without doing any calculations, determine the...Ch. 18 - 36. Without doing any calculations, determine the...Ch. 18 - Prob. 37ECh. 18 - 38. Without doing any calculations, determine the...Ch. 18 - 39. Calculate ΔSsurr at the indicated temperature...Ch. 18 - Prob. 40ECh. 18 - 41. Given the values of ΔH$$, ΔS$$, and T,...Ch. 18 - Prob. 42ECh. 18 - 43. Calculate the change in Gibbs free energy for...Ch. 18 - 44. Calculate the change in Gibbs free energy for...Ch. 18 - 45. Calculate the free energy change for this...Ch. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - 50. What is the molar entropy of a pure crystal at...Ch. 18 - Prob. 51ECh. 18 - 52. For each pair of substances, choose the one...Ch. 18 - 53. Rank each set of substances in order of...Ch. 18 - 54. Rank each set of substances in order of...Ch. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59ECh. 18 - Prob. 60ECh. 18 - Prob. 61ECh. 18 - 62. For each reaction, calculate , , and at 25 °C...Ch. 18 - 63. Use standard free energies of formation to...Ch. 18 - 64. Use standard free energies of formation to...Ch. 18 - 65. Consider the reaction:
2 NO(g) + O2(g) → 2...Ch. 18 - Prob. 66ECh. 18 - 67. Determine ΔG° for the reaction:
Fe2O3(s) + 3...Ch. 18 - 68. Calculate for the reaction:
CaCO3(s) → CaO(s)...Ch. 18 - 69. Consider the sublimation of iodine at 25.0 °C...Ch. 18 - 70. Consider the evaporation of methanol at 25.0...Ch. 18 - 71. Consider the reaction:
CH3OH(g) CO(g) + 2...Ch. 18 - Prob. 72ECh. 18 - Prob. 73ECh. 18 - Prob. 74ECh. 18 - Prob. 75ECh. 18 - Prob. 76ECh. 18 - 77. Estimate the value of the equilibrium constant...Ch. 18 - 78. Estimate the value of the equilibrium constant...Ch. 18 - 79. Consider the reaction:
H2(g) + I2(g) 2...Ch. 18 - Prob. 80ECh. 18 - 81. The change in enthalpy () for a reaction is...Ch. 18 - Prob. 82ECh. 18 - 83. Determine the sign of ΔSsys for each...Ch. 18 - 84. Determine the sign of ΔSsys for each...Ch. 18 - 85. Our atmosphere is composed primarily of...Ch. 18 - Prob. 86ECh. 18 - 87. Ethene (C2H4) can be halogenated by the...Ch. 18 - 88. H2 reacts with the halogens (X2) according to...Ch. 18 - 89. Consider this reaction occurring at 298...Ch. 18 - 90. Consider this reaction occurring at 298...Ch. 18 - Prob. 91ECh. 18 - Prob. 92ECh. 18 - 93. These reactions are important in catalytic...Ch. 18 - Prob. 94ECh. 18 - Prob. 95ECh. 18 - Prob. 96ECh. 18 - 97. Consider the reaction X2(g) → 2 X(g). When a...Ch. 18 - 98. Dinitrogen tetroxide decomposes to nitrogen...Ch. 18 - 99. Indicate and explain the sign of ΔSuniv for...Ch. 18 - Prob. 100ECh. 18 - Prob. 101ECh. 18 - Prob. 102ECh. 18 - Prob. 103ECh. 18 - Prob. 104ECh. 18 - Prob. 105ECh. 18 - Prob. 106ECh. 18 - Prob. 107ECh. 18 - 108. The salt ammonium nitrate can follow three...Ch. 18 - 109. Given the data, calculate ΔSvap for each of...Ch. 18 - Prob. 110ECh. 18 - Prob. 111ECh. 18 - Prob. 112ECh. 18 - Prob. 113ECh. 18 - 114. Which statement is true?
a. A reaction in...Ch. 18 - Prob. 115ECh. 18 - Prob. 116ECh. 18 - Prob. 117ECh. 18 - Prob. 118QGWCh. 18 - Prob. 119QGWCh. 18 - 120. Not all processes in which the system...Ch. 18 - Prob. 121QGWCh. 18 - Prob. 122QGWCh. 18 - Prob. 123DIA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- elow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forward
- Explain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forward
- Explanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY