
Electronics Fundamentals: Circuits, Devices & Applications
8th Edition
ISBN: 9780135072950
Author: Thomas L. Floyd, David Buchla
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 10P
Distinguish between input bias current and input offset current, and then calculate the input offset current in Problem 9.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please draw logic circuit
A 220-volt, 20-horsepower compound motor (long shunt, Figure 21–16A) has an armature resistance of 0.25 ohm, series field resistance of 0.19 ohm, and shunt field resistance of 33 ohms.
a. Calculate the current taken by the motor at the instant of starting if it is con-nected directly to the 220-volt line.
b. Calculate the current when the motor is running if the armature is developing 184 volts counter-emf.
Design a modulo-11 ripple (asynchronous) up-counter with negative edge-triggered T flip-flops and draw the corresponding logic circuit.
(I)Build the state diagram and extract the state table
(II)Draw the logic circuit
(III)What is the maximum modulus of the counter?
Chapter 18 Solutions
Electronics Fundamentals: Circuits, Devices & Applications
Ch. 18 - When a diff-amp has identical signals on both...Ch. 18 - A high CMRR for a diff-amp means the common-mode...Ch. 18 - Prob. 3TFQCh. 18 - The open-loop voltage gain of an op-amp is also...Ch. 18 - Prob. 5TFQCh. 18 - Prob. 6TFQCh. 18 - In a voltage-follower, the open-loop and...Ch. 18 - Prob. 8TFQCh. 18 - Prob. 9TFQCh. 18 - If the feedback resistor in an amplifier is open,...
Ch. 18 - Which characteristic docs not necessarily apply to...Ch. 18 - In selecting an op-amp. suppose you have several...Ch. 18 - Prob. 3STCh. 18 - Prob. 4STCh. 18 - Prob. 5STCh. 18 - Prob. 6STCh. 18 - Prob. 7STCh. 18 - Prob. 8STCh. 18 - If you know an op-amp's open-loop gain and nothing...Ch. 18 - Prob. 10STCh. 18 - Prob. 11STCh. 18 - The highest possible input resistance is achieved...Ch. 18 - Compare a practical op-amp to an ideal op-amp.Ch. 18 - Two IC op-amps are available to you. Their...Ch. 18 - Identify the type of input and output...Ch. 18 - Prob. 4PCh. 18 - A certain diff-amp has a differential gain of 60...Ch. 18 - A certain diff-amp has a CMRR of 65 dB. If the...Ch. 18 - Identify the type of input mode for each op-amp in...Ch. 18 - Show the common-mode input in Figure 18-37 in an...Ch. 18 - Determine the bias current, IBIAS, given that the...Ch. 18 - Distinguish between input bias current and input...Ch. 18 - A certain op-amp has a CMRR of 250,000. Convert...Ch. 18 - The open-loop gain of a certain op-amp is 175,000....Ch. 18 - The op-amp data sheet specifies a CMRR of 300,000...Ch. 18 - Figure 18-38 shows the output voltage of an op-amp...Ch. 18 - How long does it take the output voltage of an...Ch. 18 - Identify each of the op-amp configurations in...Ch. 18 - For the amplifier in Figure 18-40. determine the...Ch. 18 - Determine the closed-loop gain of each amplifier...Ch. 18 - Find the value of Rf that will produce the...Ch. 18 - Find the gain of each in amplifier in Figure...Ch. 18 - If a signal voltage of 10 mV applied to each...Ch. 18 - Determine the approximate values for each of the...Ch. 18 - Determine the input and output resistances for...Ch. 18 - Repeat Problem 23 for each circuit in Figure...Ch. 18 - Repeat Problem 23 for each circuit in Figure...Ch. 18 - Prob. 26PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- the diagram show 4 motor connected to a k-35 controller. I would like detail explanation to know how the circuit work. Is the controller compatible with the motor? The motor shown is series, parallel or both?arrow_forwardplease draw logic diagram pleasearrow_forwardPlease draw the diagrams please thank youarrow_forward
- A plane wave propagating through a medium with &,,-8 μr = 2 has: E = 0.5 e-j0.33z sin (108 t - ẞz) ax V/m. Determine (a) ẞ (b) The loss tangent (c) Wave impedance (d) Wave velocity (e) H fieldarrow_forward2) The phase voltage at the terminals of a balanced three-phase Y-connected load is 2400 V. The load has an impedance of 16+j12 2/6 and is fed from a line having an impedance of 0.10+j0.80 2/6. The Y- connected source at the sending end of the line has a positive phase sequence and an internal impedance of 0.02+j0.16 2/6. Use the a-phase voltage at the load as the reference. a) Construct the a-phase equivalent circuit of the system b) Calculate the line currents IaA, IbB, and Icc c) Calculate the phase voltages at the terminals of the source, Van, Vbn, Vcn- d) Calculate the line voltages at the source, Vab, Vbc and Vca. e) Calculate the internal phase-to-neutral voltages at the source, Va'n, Vb'n, Ve'n,arrow_forward1) • A balanced three-phase circuit has the following characteristics: Y-Y connected The line voltage at the source is Vab = 120√3(0°V • The phase sequence is positive The line impedance is 2+ j3 2/0 The load impedance is 28 + j37 02/0 a) [4 pts] Draw the single phase equivalent circuit for the a-phase. b) [2 pts] Calculate the line current IaA in the a-phase. c) [4 pts] Calculate the line voltage VAB at the load in the a-phase.arrow_forward
- Find the value of V0 using the superposition method. Note: The answer is V0=-428.57mvarrow_forwardDon't use ai to answer I will report you answerarrow_forwardIf a trolley has a 120VDC power supply intended to power auxiliary components such as lights, buzzers, and speakers, how would the speakers connect to that power system? I understand that speakers typically operate on AC, so what is the most efficient way to connect them to the 120VDC setup? Additionally, could you provide an estimate of the power output for the speakers?arrow_forward
- Choose the appropriate answer 1) Maximum dimension of antenna is 0.5m and operating frequency is 9 GHz, thus the radius of reactive near field region is 0.562m 1.265m 2.526m 3.265m 2) If distance between transmitter and receiver is 2km and the signal carrier frequency is 300kHz Rapidly time-varying fields DC field Quasi-static field None 3) The polarization mismatch factor for horizontal polarization wave incident on +z axis is is if the antenna polarization is circular 0.5 зав 0.707 1 4) Ez 0 and Hz #0 (HE modes): This is the case when neither E nor H field is transverse to the direction of wave propagation. They are sometimes referred to as TEM hybrid modes TM TE 5) The normalized radiation intensity of an antenna is represented by: U(6)=cos²(0) cos2 (30), w/s Half-power beamwidth HPBW is...... 28.75 10 0 14.3arrow_forwardChoose the best answer of the following: 1- quasi-static electromagnetic field is the a) low frequency b)high frequency c) time independent d) none of the above 2- Displacement current is taken to be negligible (compared to the conduction current) if a) σ>>wε b)σ << wɛ c) σ =0 d) (a and c) 3- The transmission line act as inductor when it terminated by: a) Open circuit load b) short circuit load c)matched load d)none of the above 4- The scattering aperture equals to the effective aperture when the antenna is: a) Complex conjugate matching b) short circuit c) open circuit d) none of the above 5- The isotropic point source has directivity of: a) Infinity b)1 c) 0 d)1.5arrow_forwardI selected a DC-DC converter capable of delivering 120 VDC from a 600 VDC input. When I reached out to the manufacturer, they asked for the total power consumption the converter would need to handle.To estimate this, I calculated the power requirements for the components that will use the 120 VDC supply: interior lighting, end lights, and buzzers. The breakdown is as follows:- Light Bulbs: 16 bulbs at 10 W each = 160 W- Buzzers: 2 buzzers at 5 W each = 10 W- End Lights: 2 lights at 15 W each = 30 W This results in a total estimated power demand of 200 W.My concern is whether I should request a higher wattage rating for the converter to provide sufficient tolerance and ensure the system operates efficiently without risking an overload. Note: The DC power system is designed specifically for a trolleyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Electrical Engineering: Ch 5: Operational Amp (2 of 28) Inverting Amplifier-Basic Operation; Author: Michel van Biezen;https://www.youtube.com/watch?v=x2xxOKOTwM4;License: Standard YouTube License, CC-BY