Concept explainers
A compound of unknown structure gave the following spectroscopic data:
Mass spectrum: M+=88.1
IR: 3600 cm-1
1ΗNMR: 1.4 δ (2 H, quartet, J=7 Hz); 1.2 δ (6H, singlet): 1.0 δ (1 H, singlet); 0.9 δ (3 H, triplet, J=7 Hz)
13CNMR: 74, 35, 27, 25 δ
(a) Assuming that the compound contains C and H but may or may not contain O, give three possible molecular formulas
(b) How many protons (H) does the compound contain?
(c) What
(d) How many carbons does the compound contain?
(e) What is the molecular formula of the compound?
(f) What is the structure of the compound?
(g) Assign peaks in the molecule’s 1HNMR spectrum corresponding to specific protons.
![Check Mark](/static/check-mark.png)
a) Three molecular formulas possible for the compound are to be given assuming that the compound contains C and H but may or may not contain oxygen.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600 cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
a) Three molecular formulas possible for the compound assuming that the compound contains C and H but may or may not contain oxygen.
Answer to Problem 55AP
a) Three molecular formulas possible for the compound assuming that the compound contains C and H and O are C5H12O, C4H8O2 and C3H4O3.
Explanation of Solution
a) The IR absorption at 3600cm-1 indicates the presence of an alcoholic group in the compound. Hence assuming the compound contains C, H and O, three possible formulas are possible for the compound with molecular mass 88. They are C5H12O, C4H8O2 and C3H4O3.
Three molecular formulas possible for the compound assuming that the compound contains C and H but may or may not contain oxygen are C5H12O, C4H8O2 and C3H4O3.
![Check Mark](/static/check-mark.png)
b) The number of protons in the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600 cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
b) The number of protons in the compound.
Answer to Problem 55AP
b) The compound has 12 protons.
Explanation of Solution
b) IN 1HNMR spectrum contain peaks accounting for the absorption for 12 protons in the molecule.
b) The compound has 12 protons.
![Check Mark](/static/check-mark.png)
c) The functional group(s) present in the compound is/are to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
c) The functional group(s) present in the compound.
Answer to Problem 55AP
c) The functional group in the compound is –OH (alcohol).
Explanation of Solution
c) In 13HNMR only four signals are observed. But 12 protons could not be accommodated on four carbons. At least five carbons are required. This justified by the 1HNMR spectrum which an absorption integrating to six protons present on two equivalent carbons. Hence five carbons are present in the molecule.
c) The functional group in the compound is –OH (alcohol).
![Check Mark](/static/check-mark.png)
d) The number of carbons in the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
d) The number of carbons in the compound.
Answer to Problem 55AP
d) The compound has 5 carbons.
Explanation of Solution
d) Its molecular formula has to be C5H12O as it is a five carbon alcohol with 12 hydrogen atoms.
d) The compound has 5 carbons.
![Check Mark](/static/check-mark.png)
e) Molecular formula of the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
e) Molecular formula of the compound.
Answer to Problem 55AP
e) Molecular formula of the compound is C5H12O.
Explanation of Solution
e) The six proton singlet at 1.2 δ can be attributed to two methyl groups attached to a carbon without any proton. The two proton triplet at 1.4 δ can be assigned to CH2 attached to a methyl which gives a triplet at 0.9 δ. The one proton singlet at 1.0 δ is due to the hydroxyl proton.
e) Molecular formula of the compound is C5H12O.
![Check Mark](/static/check-mark.png)
f) The structure of the compound is to be given.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To give:
f) The structure of the compound.
Answer to Problem 55AP
f) The structure of the compound is
Explanation of Solution
f) Thus the structure of the alcohol is
The structure of the compound is
![Check Mark](/static/check-mark.png)
g) The peaks in the 1HNMR of the molecule are to be assigned to specific protons.
Interpretation:
A compound has the spectral data:
Mass spectrum: M+=88.1; IR=3600cm-1;
1HNMR: 1.4 δ (2H, quartet, J=7Hz); 1.2 δ (6H, singlet); 1.0 δ (1H, singlet); 0.9 δ (3H, triplet, J=7Hz)
13CNMR: 74, 35, 27, 25 δ
Concept introduction:
Molecular ion peak in the mass spectrum gives an idea about the relative molecular mass of the compound. From the molecular mass and knowing the atomic masses of C, H and O the possible molecular formulas for the compound can be arrived.
In IR the O-H stretching of alcohols and phenols are observed in the range 3200-3550 cm-1. In 1HNMR spectrum, the alcoholic proton absorption occurs in the range 3.4 δ - 4.5 δ while that of phenolic proton occur in the range 3.0 to 8.0. The absorption due to 10 alkyl group (CH3) is seen around 0.7 δ - 1.3 δ, that due to a 20 alkyl group (CH2) is seen around 1.2 δ - 1.6 δ while that due to 30 alkyl group (CH) is seen around 1.4 δ - 1.8 δ The multiplicity of a signal gives an idea about the protons present in the adjacent carbons.
In 13CNMR spectrum, the carbon bonded to –OH absorb in the range 50-80 δ. The primary alkyl carbon absorb in the range 10-15 δ, a secondary alkyl radical in the range 16-25 δ while a tertiary alkyl in the range 25-35 δ.
To assign:
g) The peaks in the 1HNMR of the molecule to specific protons.
Answer to Problem 55AP
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
Explanation of Solution
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
g) 1.2 δ (6H, singlet) given by protons marked as ‘a’.
1.4 δ (2H, quartet, J=7Hz) given by protons marked as ‘b’.
0.9 δ (3H, triplet, J=7Hz) given by protons marked as ‘c’.
1.0 δ (1H, singlet) given by proton marked as‘d’.
Want to see more full solutions like this?
Chapter 17 Solutions
ORGANIC CHEMISTRY W/OWL
- In the Thermo Fisher application note about wine analysis (Lesson 3), the following chromatogram was collected of nine components of wine. If peak 3 has a retention time of 3.15 minutes and a peak width of 0.070 minutes, and peak 4 has a retention time of 3.24 minutes and a peak width of 0.075 minutes, what is the resolution factor between the two peaks? [Hint: it will help to review Lesson 2 for this question.] MAU 300 200 T 34 5 100- 1 2 CO 6 7 8 9 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 Minutes 3.22 0.62 1.04 O 1.24arrow_forwardThe diagram shows two metals, A and B, which melt at 1000°C and 1400°C. State the weight percentage of the primary constituent (grains of C) that would be obtained by solidifying a 20% alloy of B. 1000°C a+L L+C 900°С 12 α a+C 45 1200 C L+y 140096 C+Y a+ß 800°C 700°C C+B 96 92 a+B 0 10 20 30 40 50 60 70 80 90 100 A % peso B Barrow_forward8. Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. 2 4 3 ō (ppm) OH 4 6 6 СОН 2 1 0arrow_forward
- 7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forwarde. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward
- 1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve this long problem. Thanksarrow_forward4. An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!) 5. Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl. 200 150 100 50 ō (ppm) 1arrow_forwardSpeaking of composite materials, indicate the correct option:(A). Composite materials can only be: metal-polymer or polymer-polymer.(B). Composite materials can be made up of particles, but not fibers or sheets.(C). When the reinforcing particles are uniformly distributed in a composite material, there may be a greater tendency for it to have isotropic properties.(D). None of the above is correct.arrow_forward
- If we are talking about viscoelastic modulus or viscoelastic relaxation modulus in polymers, indicate the correct option.(A). It reports the variation of elastic behavior as a function of time.(B). It is only useful for defining its glass transition temperature.(C). It only allows us to define the polymer degradation temperature.(D). Neither option is correct.arrow_forwardWhen natural light falls perpendicularly on a material A, it has a reflectivity of 0.813%. Indicate the value of the refractive index.arrow_forwardIn piezoelectricity and piezoelectric ceramics, one of the following options is false:(A). Piezoelectricity allows an electrical signal to be transformed into a mechanical one.(B). PbZrO3 is a well-known piezoelectric ceramic.(C). Piezoelectricity and ferroelectricity in general have no relationship.(D). One of the applications of piezoelectricity is sonar.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580350/9781305580350_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080485/9781305080485_smallCoverImage.gif)