Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Solution Summary: The author evaluates the surface integral by obtaining line integral in Stokes' theorem, where n is the unit vector normal to S determined by the orientation of S.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral
∬
s
(
∇
×
F
)
∙ndS. Assume n points in an upward direction.
23.
F
=
〈
y
,
1
,
z
〉
; S is the part of the surface
z
=
2
x
that lies within the cone
z
=
x
2
+
y
2
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stokes’ Theorem to determine the value of the surface integral ∫∫S (∇ x F) ⋅ n dS. Assume n points in an upward direction.
F = ⟨4x, -8z, 4y⟩; S is the part of the paraboloidz = 1 - 2x2 - 3y2 that lies within the paraboloid z = 2x2 + y2 .
Precalculus Enhanced with Graphing Utilities (7th Edition)
Precalculus Enhanced with Graphing Utilities
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.