Air is cooled as it flows through a 30-cm-diameter duct. The inlet conditions are Ma1 = 1.2, T01 = 350 K, and P01 = 240 kPa and the exit Mach number is Ma2 = 2.0. Disregarding frictional effects, determine the rate of cooling of air.

The rate of cooling of air.
Answer to Problem 136RP
The required rate of cooling of air is
Explanation of Solution
Write the formula of ratio of stagnation temperature to the static temperature at inlet of the duct.
Here, the inlet static temperature is
Write the formula of ratio of stagnation pressure to the static pressure at inlet of the duct.
Here, the actual (static) pressure at the inlet of duct is
Write the formula for inlet density of air.
Here, the pressure of air at the inlet is
Write the formula for velocity of sound at the inlet conditions.
Here, speed of sound at the inlet condition is
Write formula for the velocity of air at inlet.
Write the formula for mass flow rate of air with inlet conditions of air.
Here, the mass flow rate of air at the inlet is
Write the formula for stagnation temperature ratio of exit to inlet.
Write the formula for heat transfer rate
Here, the specific heat at constant pressure is
Refer Table A-34, “Rayleigh flow functions for an ideal gas with
The Rayleigh flow function of inlet stagnation temperature to the critical stagnation temperature corresponding to the inlet Mach number of
The Rayleigh flow function of exit stagnation temperature to the critical stagnation temperature corresponding to the exit Mach number of
Refer Table A-, “Molar mass, gas constant, and critical2point properties”.
The gas constant
Refer Table A-2, “Ideal-gas specific heats of various common gases”.
The specific heat ratio
Conclusion:
Substitute
Substitute
Substitute
Equation (III).
Substitute
The cross sectional area
Substitute
Equation (V).
Thus, the rate of cooling air is
Substitute
Substitute
Here, the negative sign indicates that the air requires cooling in order to be accelerated.
Thus, the required rate of cooling of air is
Want to see more full solutions like this?
Chapter 17 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Can you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forwardFind the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





