The rate of heat transfer in the duct.
The pressure drop in the duct.
Answer to Problem 103P
The rate of heat transfer in the duct is
The pressure drop in the duct is
Explanation of Solution
Determine the inlet density of air.
Here, the inlet pressure of air is
Determine the cross sectional area of duct at inlet.
Here, the diameter of the duct is
Determine the inlet velocity of air.
Here, the mass flow rate of the air is
Determine the inlet stagnation temperature of air.
Here, the inlet static temperature of ideal gas is
Determine the relation of ideal gas speed of sound at the inlet.
Here, the specific heat ratio of air is
Determine the speed of sound at the inlet.
The inlet velocity of the air flow in the device is
Determine the static temperature in the duct.
Here, the ratio of Rayleigh flow for inlet temperature is
Determine the static pressure in the duct.
Here, the ratio of Rayleigh flow for inlet pressure is
Determine the stagnation temperature in the duct.
Here, the ratio of Rayleigh flow for exit stagnation temperature is
Determine the rate of heat transfer of the duct.
Determine the pressure drop of the duct.
Conclusion:
From the Table A-2E, “Ideal-gas specific heats of various common gases” to obtain value of universal gas constant, specific heat of pressure, and the specific heat ratio of air at
Substitute
Substitute
Substitute
Substitute
Substitute 1.4 for k,
Substitute
Refer to Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value ratio of static temperature, pressure, and stagnation temperature at
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is ratio of stagnation temperature and Mach number.
Show the Mach number at
S. No |
Mach number |
ratio of stagnation temperature |
1 | ||
2 | ||
3 |
Calculate ratio of static temperature, pressure, and stagnation temperature at
Substitute
From above calculation the ratio of stagnation temperature at
Repeat the Equation (XII), to obtain the value of inlet ratio of static temperature and pressure at
From the Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value of the outlet ratio of temperature, pressure, and velocity at 1 outlet Mach number as:
Substitute
Substitute 30 psia for
Substitute
Substitute
Thus, the rate of heat transfer in the duct is
Substitute
Thus, the pressure drop in the duct is
Want to see more full solutions like this?
Chapter 17 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Mych CD 36280 kg. 0.36 givens Tesla truck frailer 2017 Model Vven 96154kph ronge 804,5km Cr Powertrain Across PHVAC rwheel 0.006 0.88 9M² 2 2kW 0.55M ng Zg Prated Trated Pair 20 0.95 1080 kW 1760 Nm 1,2 determine the battery energy required to meet the range when fully loaded determine the approximate time for the fully-loaded truck-trailor to accelerate from 0 to 60 mph while Ignoring vehicle load forcesarrow_forward12-217. The block B is sus- pended from a cable that is at- tached to the block at E, wraps around three pulleys, and is tied to the back of a truck. If the truck starts from rest when ID is zero, and moves forward with a constant acceleration of ap = 0.5 m/s², determine the speed of the block at D the instant x = 2 m. Neglect the size of the pulleys in the calcu- lation. When xƊ = 0, yc = 5 m, so that points C and D are at the Prob. 12-217 5 m yc =2M Xparrow_forwardsolve both and show matlab code auto controlsarrow_forward
- 12-82. The roller coaster car trav- els down the helical path at con- stant speed such that the paramet- ric equations that define its posi- tion are x = c sin kt, y = c cos kt, z = h - bt, where c, h, and b are constants. Determine the mag- nitudes of its velocity and accelera- tion. Prob. 12-82 Narrow_forwardGiven: = refueling Powertran SOURCE EMISSIONS vehide eff eff gasoline 266g co₂/kwh- HEV 0.90 0.285 FLgrid 411ilg Co₂/kWh 41111gCo₂/kWh EV 0.85 0.80 Production 11x10% og CO₂ 13.7 x 10°g CO₂ A) Calculate the breakeven pont (in km driven) for a EV against on HEV in Florida of 0.1kWh/kM Use a drive cycle conversion 5) How efficient would the powertrain of the HEV in this example have to be to break even with an EV in Florida after 150,000 Miles of service (240,000) km Is it plausible to achieve the answer from pert b Consideans the HaXINERY theoretical efficiency of the Carnot cycle is 5020 and there are additional losses of the transMISSION :- 90% efficiency ? c A what do you conclude is the leading factor in why EVs are less emissive than ICE,arrow_forwardsolve autocontrolsarrow_forward
- Problem 3.21P: Air at 100F(38C) db,65F(18C) wb, and sea-level pressure is humidified adiabatically with steam. The steam supplied contains 20 percent moisture(quality of 0.80) at 14.7psia(101.3kpa). The air is humidified to 60 percent relative humidity. Find the dry bulb temperature of the humidified air using (a)chart 1a or 1b and (b) the program PSYCH.arrow_forwardPUNTO 4. calculate their DoF using Gruebler's formula. PUNTO 5. Groundarrow_forwardPUNTO 2. PUNTO 3. calculate their DoF using Gruebler's formula. III IAarrow_forward
- calculate their DoF using Gruebler's formula. PUNTO 6. PUNTO 7. (Ctrl)arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.given that: summation of K gate valve = 0.25check valve=390 degree elbow= 0.75foot valve= 0.78arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY