Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 67. The constant-density cone with radius a , height h , and base in the xy -plane
Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 67. The constant-density cone with radius a , height h , and base in the xy -plane
Solution Summary: The author explains the formula used to find the mass and center of mass of a cone with constant density.
Mass and center of massLet S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes (see Section 13.6) are
M
y
z
=
∬
S
x
ρ
(
x
,
y
,
z
)
d
S
,
M
x
z
=
∬
S
y
ρ
(
x
,
y
,
z
)
d
S
, and
M
x
y
=
∬
S
z
ρ
(
x
,
y
,
z
)
d
S
. The coordinates of the center of mass of the shell are
x
¯
=
M
y
z
m
,
y
¯
=
M
x
z
m
,
z
¯
=
M
x
y
m
, where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible.
67. The constant-density cone with radius a, height h, and base in the xy-plane
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY