Navier-Stokes equation The Navier-Stokes equation is the fundamental equation of fluid dynamics that models the flow in everything from bathtubs to oceans. In one of its many forms (incompressible, viscous flow), the equation is
In this notation, V = (u, v, w) is the three-dimensional velocity field, p is the (scalar) pressure, ρ is the constant density of the fluid, and μ is the constant viscosity. Write out the three component equations of this
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Glencoe Math Accelerated, Student Edition
Precalculus Enhanced with Graphing Utilities (7th Edition)
Precalculus
Thomas' Calculus: Early Transcendentals (14th Edition)
University Calculus: Early Transcendentals (4th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- Calculate the velocity and acceleration vectors, and speed for when t = 11. Velocity: Acceleration: r(t) = (cos(6t), cos(t), sin(t)) Speed: Usage: To enter a vector, for example (x, y, z), type ""arrow_forwardexample of a vector equation for a line in 3 dimensions which doesn’t intersect the plane at z = 0arrow_forwardUsing |||| and 0, give the vector in (x, y)-form. =arrow_forward
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x + 2y + z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + e-z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x2 + y2 + z2;;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forward
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100e-x2 - y2 - z2; D is the sphere of radius a centered at the origin.arrow_forwardTruo or Fase ? If A is second order tensor ,thenarrow_forwardVector and Electromagneticsarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage