EBK ENGINEERING FUNDAMENTALS: AN INTROD
5th Edition
ISBN: 9780100543409
Author: MOAVENI
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.2, Problem 2BYG
To determine
Give three examples of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please answer the following questions and make sure you answer each question please.
Water is discharged into the atmosphere
through a bent nozzle of an angle (a) as
shown in the figure. The cross-sectional
area at the nozzle inlet and outlet are (Ain)
and (Aout), respectively. The discharge
through the nozzle is (Q). The gauge
pressure at the nozzle inlet is (Pin). The
bend lies in a horizontal plane.
Ain
Vin
Aout
X
Atmosphere
Vout
Problem (10): Given the values of Ain [m2], Aout [m²], Pin [atm], Q [m³/s], and a [degrees], calculate the
magnitude of the reaction force component in y-direction (Ry) in [N].
Givens:
A in
0.169 m^2
A out
Pin
0.143 m^2
0.552 atm
=
Q
α
0.367 m^3/s
= 31.72 degrees
Answers:
( 1 ) 6264.193 N
(2) 12041.886 N
( 3 ) 8715.747 N
( 4 ) 7139.937 N
Problem (12): A pump is being used to lift water from the bottom
tank to the top tank in a pipe of diameter (d) at a discharge (Q). The
pipe system comprises four Long radius 90° threaded elbows. The
pipe entrance is sharp-edged, and the pipe exit is sudden. A Ball
valve (1/3 closed) is used to control the discharge in the pipeline.
Given the values of Q [Lit/s], and d [cm], calculate the power loss
due to components (i.e., minor losses) in the pipe (Wminor-loss) in
[W].
Givens:
Q = 12.275 lit/s
d = 6.266 cm
Answers:
( 1 ) 1142.006 W
(2) 952.086 W
( 3 ) 1225.555 W
( 4 ) 1331.216 W
Loss Coefficients for Pipe Components (h,= K,Y)
Component
a. Elbows
KL
elbow
Regular 90°, flanged
0.3
Regular 90°, threaded
1.5
Long radius 90°, flanged
0.2
V
90° elbow
Long radius 90°, threaded 0.7
Long radius 45°, flanged
0.2
0.4
Regular 45°, threaded
. 180° return bends
180° return bend, flanged 0.2
V
45° elbow
180° return bend, threaded 1.5
c. Tees
Line flow, flanged
0.2
Line flow, threaded
0.9
180°…
Chapter 17 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
Ch. 17.1 - Give examples of properties that engineers...Ch. 17.1 - Prob. 2BYGCh. 17.1 - Prob. 3BYGCh. 17.1 - Prob. 4BYGCh. 17.1 - Prob. 5BYGCh. 17.1 - Prob. BYGVCh. 17.2 - Prob. 1BYGCh. 17.2 - Prob. 2BYGCh. 17.2 - Prob. 3BYGCh. 17.2 - In your own words, explain what is meant by the...
Ch. 17.2 - Prob. 5BYGCh. 17.2 - Prob. BYGVCh. 17.3 - What is a lightweight metal?Ch. 17.3 - Prob. 2BYGCh. 17.3 - Prob. 3BYGCh. 17.3 - Prob. 4BYGCh. 17.3 - Give examples of copper use.Ch. 17.3 - VocabularyState the meaning of the following...Ch. 17.4 - What are the main ingredients of concrete?Ch. 17.4 - Why is water sprayed on newly poured concrete for...Ch. 17.4 - Prob. 3BYGCh. 17.4 - Prob. BYGVCh. 17.5 - Prob. 1BYGCh. 17.5 - Prob. 2BYGCh. 17.5 - Prob. 3BYGCh. 17.5 - Prob. 4BYGCh. 17.5 - Prob. 5BYGCh. 17.5 - Prob. 6BYGCh. 17.5 - Prob. BYGVCh. 17.6 - Prob. 1BYGCh. 17.6 - Prob. 2BYGCh. 17.6 - Prob. 3BYGCh. 17.6 - Prob. 4BYGCh. 17.6 - Prob. BYGVCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Prob. 3PCh. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 16PCh. 17 - Prob. 18PCh. 17 - Prob. 20PCh. 17 - Prob. 22PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 32P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Compute for the stresses (initial, const and final stage) and check for compliance in NSCP provisions. Also compute the following: 1. Compute and check if the section is Uncracked, Transition or Cracked as per NSCP. 2. Compute for its flexural capacity and check if it could carry the given load. BEAM SECTION NOT TO SCALE 1400mm 300 $1098 400 */ 400*300* 300 200 300 100 ORIGINAL SECTION/PRECA CAST-IN-PLACE (CIP) PART PRECAST LOADING AT SERVICE M • 21 KN (DEAD LOAD ONLY) 21KN 4.75m 9.25m CIVEN DATA STRANDS: 12-02 AT 120KN/STRAND (GOMM FROM BOTTOM) 8-2 AT 120HN/STRAND (120mm FROM BOTTOM) fc 42.5 MPa (BEAM) fc 38 MPa (CIP) f'a = 80% or fa fp-1860 MPa ESTRANDS 1976Pa OONG 23.6/m³ LOES 1-8% Loss 18% APPLY 3M LIVE LOAD AT CONST. PHASEarrow_forward4. Determine the stability of the cantilever shown in the figure below (use Coulomb earth theory for the lateral stress due to the backfill material). 1 m 0.5 m Backfill 7 = 18.5 kN/m³ • = 30° 20 6 = 20° 6 m Y₁ = 24 kN/m³ 1.2 m 1 m 4.5 m Base soil Clay: 7 = 19 kN/m³,0 = 30%, 0,, = 20°, s,, = 94 kPa a. With s₁ = c = 94 kPa (disregard values), determine allowable soil bearing capacity of the base soil if the factor of safety is equal to 3. b. Determine the FS against overturning. C. Determine the FS against sliding if the coefficient of friction between footing concrete base and soil is b. d. Determine the FS for bearing capacity.arrow_forwardDirections: Show your solutions explicitly, i.e., do not just write the final answer. 1. A wall footing is to be constructed on a clay soil 1.4 below the ground. The footing is to support a wall that imposes a load of 130 kN per meter of wall length. Considering general shear failure, determine the following: 130 kN/mm 1.4 m a. Footing width if the factor of safety is 3. b. Ultimate bearing capacity if B = 0.95 m. C. New factor of safety. y = 17.92 kN/m² c = 14.5 kPa $ = 30° 1.5 m and has its hottom 2 m below the ground surface.arrow_forward
- 2. A square footing shown has a dimension of 1.5 m x 1.5 m and has its bottom 2 m below the ground surface. The groundwater table is located at a depth of 3 m below the ground surface. Assume a general shear failure. Determine the following: 2 m y = 16 kN/m³ c = 14.5 kPa → = 28° 3 m 1,5 m ysat 18.5 kN/m³ a. Ultimate bearing capacity of the soil beneath the footing (in kPa). b. Allowable bearing capacity if it has a factor of safety of 3 (in kPa). C. Allowable load that the footing could carry (in kN). d. Allowable net bearing capacity if factor of safety is 3. Allowable net load if factor of safety is 3.arrow_forwardProblem (11): A pipe discharges an unknown fluid into the atmosphere from a tank of depth (h) through a pipe of length (L), and diameter (d). Given the values of L [m], d [cm], and (h) [cm], calculate the discharge rate (Q) [lit/s] that would maintain Laminar flow in the pipe with a Reynolds number of Re-1500. Ignore minor losses. Givens: L = 139.364 m d = 12.614 cm h = 76.609 cm Answers: ( 1 ) 6.911 lit/s (2) 8.179 lit/s ( 3 ) 4.244 lit/s (4) 4.987 lit/s h darrow_forwardB2. For the truss below, determine all member forces. Hint: see the provided slide with the problem set. P₁ = 12 kip and P2 = 6 kip (20 pts). P₁ A 16 ft D 8 ft 8 ft 8 ft B J K E 8 ft 8 ft I H G 8 ft 8 ft 8 ft B₁₂ F ΠΟΙΟΣarrow_forward
- Directions: Show your solutions explicitly, I.e., do not just write the final answer. Always simplify and box your final answer. 1. A wall footing is to be constructed on a clay soll 1.4 below the ground. The footing is to support a wall that imposes a load of 130 kN per meter of wall length. Considering general shear failure, determine the following: 130 kN/m 4m a. Footing width if the factor of safety is 3. b. Ultimate bearing capacity if B = 0.95 m. c. New factor of safety. Y = 17.92 kN/m² c = 14.5 kPa $ -30° 2. A square footing shown has a dimension of 1.5 mx 1.5 m and has its bottom 2 m below the ground surface. The groundwater table is located at a depth of 3 m below the ground surface. Assume a general shear failure. Determine the following: L 2 m y = 16 kN/m³ c = 14.5 kPa = 28° 3 m 1.5 m Ysa1 = 18.5 kN/m³ a. Ultimate bearing capacity of the soll beneath the footing (in kPa). b. Allowable bearing capacity if it has a factor of safety of 3 (in kPa). C. Allowable load that the…arrow_forwardB2. For the truss below, determine all member forces. Hint: see the provided slide with the problem set. P₁ = 12 kip and P₂ = 6 kip (20 pts). P₁ 16 ft D 8 ft 8 ft 8 ft B K E 8 ft 8 ft 8 ft H 8 ft В G 1000 8 ftarrow_forward14.1 A beam of rectangular cross section is 125 mm wide and 200 mm deep. If the maximum bending moment is 28.5 kN⚫m, determine (a) the maximum tensile and compressive bending stress, and (b) the bending stress 25 mm from the top of the section. 14.2 A rectangular beam 50 mm wide and 100 mm deep is subjected to bending. What bending moment will cause a maximum bending stress of 137.9 MN/m² (MPa)? 14.3 Determine the bending moment in a rectangular beam 3 in. wide and 6 in. deep if the maximum bend- ing stress is 15,000 psi.arrow_forward
- B3. For the Howe truss below, assume all members are pin connected and take P₁ = 5 kN and P₂ = 10 kN: a. Determine all member forces (16 pts). b. Use a section cut to verify your answers for members GF, GD, and CD (4 Pts) P₁ A H 500 8 0000 B 0000] 2 m m 2 m 3 m B E D marrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,

Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning

Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning

Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning

Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Understanding Stresses in Beams; Author: The Efficient Engineer;https://www.youtube.com/watch?v=f08Y39UiC-o;License: Standard Youtube License