Gravitational force due to a mass The gravitational force on a point mass m due to a point mass M at the origin is a gradient field with potential
a. Find the components of the gravitational force in the x-,y-, and z-directions, where F(x, y, z) = –▿U(x, y z).
b. Show that the gravitational force points in the radial direction (outward from point mass M) and the radial component is
c. Show that the
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Glencoe Math Accelerated, Student Edition
University Calculus: Early Transcendentals (4th Edition)
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + e-z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x2 + y2 + z2;;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100e-x2 - y2 - z2; D is the sphere of radius a centered at the origin.arrow_forward
- Determine if each of the following vector fields is the gradient of a function f(x, y). If so, find all of the functions with this gradient. (a) (3x² + e¹0) i + (10x e¹0 - 9 siny) j (b) (10x el0y 9 sin y) i + (3x² + e¹0y) j a) I have placed my work and my answer on my answer sheetarrow_forwardGradient fields on curves For the potential function φ and points A, B, C, and D on the level curve φ(x, y) = 0, complete the following steps.a. Find the gradient field F = ∇φ.b. Evaluate F at the points A, B, C, and D.c. Plot the level curve φ(x, y) = 0 and the vectors F at the points A, B, C, and D. φ(x, y) = y - 2x; A(-1, -2), B(0, 0), C(1, 2), and D(2, 4)arrow_forwardSolve 2arrow_forward
- 7. Properties of position vectors Let r = xi + yj + zk and let r = |r|. a. Show that Vr = r/r. b. Show that V(r") = nr"-2r. c. Find a function whose gradient equals r.arrow_forwardFind maximhm rate of changearrow_forwardA seasoned parachutist went for a skydiving trip where he performed freefall before deploying the parachute. According to Newton's Second Law of Motion, there are two forcës acting on the body of the parachutist, the forces of gravity (F,) and drag force due to air resistance (Fa) as shown in Figure 1. Fa = -cv ITM EUTM FUTM * UTM TM Fg= -mg x(t) UTM UT UTM /IM LTM UTM UTM TUIM UTM F UT GROUND Figure 1: Force acting on body of free-fall where x(t) is the position of the parachutist from the ground at given time, t is the time of fall calculated from the start of jump, m is the parachutist's mass, g is the gravitational acceleration, v is the velocity of the fall and c is the drag coefficient. The equation for the velocity and the position is given by the equations below: EUTM PUT v(t) = mg -et/m – 1) (Eq. 1.1) x(t) = x(0) – Where x(0) = 3200 m, m = 79.8 kg, g = 9.81m/s² and c = 6.6 kg/s. It was established that the critical position to deploy the parachutes is at 762 m from the ground…arrow_forward
- Let A be the vector potential and B the magnetic field of the infinite solenoid of radius R. Then B(r) = {Bk if R r where r = √x² + y² is the distance to the z-axis and B is a constant that depends on the current strength I and the spacing of the turns of wire. The vector potential for B is A(r) = { }B (-3,2,0) B(-y.x,0) 8 (a) Use Stokes' Theorem to compute the flux of B through a circle in the xy-plane of radius r = 6 R if r < R A dr = (b) Use Stokes' Theorem to compute the circulation of A around the boundary C of a surface lying outside the solenoid. (Use symbolic notation and fractions where needed.) C 2 Br 0arrow_forwardRepeat Exercise 27 for the forces KX = (2, – 3) and KY = (- 2, 3).arrow_forwardConsider the function Question 1 f(x, y) = -y ln x + xlny+ y a) Find the directional derivative of f at the point (1, 2) in the direction of the vector v = (-√√3,-1). b) In which direction does f have the maximum rate of change, and what is this maximum rate of change?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage