Basic Technical Mathematics
11th Edition
ISBN: 9780134437705
Author: Washington
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 17.1, Problem 32E
To determine
To sketch: The inequalities
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(4) (8 points)
(a) (2 points) Write down a normal vector n for the plane P given by the equation
x+2y+z+4=0.
(b) (4 points) Find two vectors v, w in the plane P that are not parallel.
(c) (2 points) Using your answers to part (b), write down a parametrization r: R² —
R3 of the plane P.
(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3
and 2x + z = 3. Then determine a parametrization of the intersection line of the two
planes.
(3) (6 points)
(a) (4 points) Find all vectors u in the yz-plane that have magnitude [u
also are at a 45° angle with the vector j = (0, 1,0).
= 1 and
(b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an
equation of the plane through (0,0,0) that has u as its normal.
Chapter 17 Solutions
Basic Technical Mathematics
Ch. 17.1 - For −6 < 3, determine the inequality if
1. 8 is...Ch. 17.1 - Prob. 2PECh. 17.1 - For the inequality −6 < 3, state the inequality...Ch. 17.1 - Prob. 4PECh. 17.1 - Prob. 5PECh. 17.1 - In Exercises 1–4, make the given changes in the...Ch. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...
Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 49–52, solve the given problems.
49....Ch. 17.1 - In Exercises 49–52, solve the given problems.
50....Ch. 17.1 - In Exercises 49–52, solve the given...Ch. 17.1 - In Exercises 49–52, solve the given problems.
52....Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - Prob. 62ECh. 17.2 - Prob. 1PECh. 17.2 - Prob. 2PECh. 17.2 - Prob. 3PECh. 17.2 - Prob. 4PECh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.3 - Prob. 1PECh. 17.3 - Prob. 2PECh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.3 - Prob. 36ECh. 17.3 - Prob. 37ECh. 17.3 - Prob. 38ECh. 17.3 - Prob. 39ECh. 17.3 - Prob. 40ECh. 17.3 - Prob. 41ECh. 17.3 - Prob. 42ECh. 17.3 - Prob. 43ECh. 17.3 - Prob. 44ECh. 17.3 - Prob. 45ECh. 17.3 - Prob. 46ECh. 17.3 - Prob. 47ECh. 17.3 - Prob. 48ECh. 17.3 - Prob. 49ECh. 17.3 - Prob. 50ECh. 17.3 - Prob. 51ECh. 17.3 - Prob. 52ECh. 17.3 - Prob. 53ECh. 17.3 - Prob. 54ECh. 17.3 - Prob. 55ECh. 17.3 - Prob. 56ECh. 17.3 - In Exercises 51–62, answer the given questions by...Ch. 17.3 - Prob. 58ECh. 17.3 - Prob. 59ECh. 17.3 - Prob. 60ECh. 17.3 - Prob. 61ECh. 17.3 - Prob. 62ECh. 17.4 - Prob. 1PECh. 17.4 - Prob. 2PECh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.5 - Prob. 1PECh. 17.5 - Prob. 2PECh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17.5 - Prob. 39ECh. 17.5 - Prob. 40ECh. 17.5 - Prob. 41ECh. 17.5 - Prob. 42ECh. 17.5 - Prob. 43ECh. 17.5 - Prob. 44ECh. 17.5 - Prob. 45ECh. 17.5 - Prob. 46ECh. 17.5 - Prob. 47ECh. 17.5 - Prob. 48ECh. 17.5 - Prob. 49ECh. 17.5 - Prob. 50ECh. 17.5 - Prob. 51ECh. 17.5 - Prob. 52ECh. 17.5 - Prob. 53ECh. 17.5 - Prob. 54ECh. 17.5 - Prob. 55ECh. 17.5 - Prob. 56ECh. 17.6 - Prob. 1PECh. 17.6 - Prob. 2PECh. 17.6 - Prob. 1ECh. 17.6 - Prob. 2ECh. 17.6 - Prob. 3ECh. 17.6 - Prob. 4ECh. 17.6 - Prob. 5ECh. 17.6 - Prob. 6ECh. 17.6 - Prob. 7ECh. 17.6 - Prob. 8ECh. 17.6 - Prob. 9ECh. 17.6 - Prob. 10ECh. 17.6 - Prob. 11ECh. 17.6 - Prob. 12ECh. 17.6 - Prob. 13ECh. 17.6 - Prob. 14ECh. 17.6 - Prob. 15ECh. 17.6 - Prob. 16ECh. 17.6 - Prob. 17ECh. 17.6 - Prob. 18ECh. 17.6 - Prob. 19ECh. 17.6 - In Exercises 17–22, solve the given linear...Ch. 17.6 - Prob. 21ECh. 17.6 - Prob. 22ECh. 17 - Prob. 1RECh. 17 - Prob. 2RECh. 17 - Prob. 3RECh. 17 - Prob. 4RECh. 17 - Prob. 5RECh. 17 - Prob. 6RECh. 17 - Prob. 7RECh. 17 - Prob. 8RECh. 17 - Prob. 9RECh. 17 - Prob. 10RECh. 17 - Prob. 11RECh. 17 - Prob. 12RECh. 17 - Prob. 13RECh. 17 - Prob. 14RECh. 17 - Prob. 15RECh. 17 - Prob. 16RECh. 17 - Prob. 17RECh. 17 - Prob. 18RECh. 17 - Prob. 19RECh. 17 - Prob. 20RECh. 17 - Prob. 21RECh. 17 - Prob. 22RECh. 17 - Prob. 23RECh. 17 - Prob. 24RECh. 17 - Prob. 25RECh. 17 - Prob. 26RECh. 17 - Prob. 27RECh. 17 - Prob. 28RECh. 17 - Prob. 29RECh. 17 - Prob. 30RECh. 17 - Prob. 31RECh. 17 - Prob. 32RECh. 17 - Prob. 33RECh. 17 - Prob. 34RECh. 17 - Prob. 35RECh. 17 - Prob. 36RECh. 17 - Prob. 37RECh. 17 - Prob. 38RECh. 17 - Prob. 39RECh. 17 - Prob. 40RECh. 17 - Prob. 41RECh. 17 - Prob. 42RECh. 17 - Prob. 43RECh. 17 - Prob. 44RECh. 17 - Prob. 45RECh. 17 - Prob. 46RECh. 17 - Prob. 47RECh. 17 - Prob. 48RECh. 17 - Prob. 49RECh. 17 - Prob. 50RECh. 17 - Prob. 51RECh. 17 - Prob. 52RECh. 17 - Prob. 53RECh. 17 - Prob. 54RECh. 17 - Prob. 55RECh. 17 - Prob. 56RECh. 17 - Prob. 57RECh. 17 - Prob. 58RECh. 17 - Prob. 59RECh. 17 - Prob. 60RECh. 17 - Prob. 61RECh. 17 - Prob. 62RECh. 17 - Prob. 63RECh. 17 - Prob. 64RECh. 17 - Prob. 65RECh. 17 - Prob. 66RECh. 17 - Prob. 67RECh. 17 - Prob. 68RECh. 17 - Prob. 69RECh. 17 - Prob. 70RECh. 17 - Prob. 71RECh. 17 - Prob. 72RECh. 17 - Prob. 73RECh. 17 - Prob. 74RECh. 17 - Prob. 75RECh. 17 - Prob. 76RECh. 17 - Prob. 77RECh. 17 - Prob. 78RECh. 17 - Prob. 79RECh. 17 - Prob. 80RECh. 17 - Prob. 81RECh. 17 - Prob. 82RECh. 17 - Prob. 83RECh. 17 - Prob. 84RECh. 17 - Prob. 85RECh. 17 - Prob. 86RECh. 17 - Prob. 87RECh. 17 - Prob. 88RECh. 17 - Prob. 89RECh. 17 - Prob. 90RECh. 17 - Prob. 91RECh. 17 - Prob. 1PTCh. 17 - Prob. 2PTCh. 17 - Prob. 3PTCh. 17 - Prob. 4PTCh. 17 - Prob. 5PTCh. 17 - Prob. 6PTCh. 17 - Prob. 7PTCh. 17 - Prob. 8PTCh. 17 - Prob. 9PTCh. 17 - Prob. 10PTCh. 17 - Prob. 11PTCh. 17 - Prob. 12PTCh. 17 - Prob. 13PTCh. 17 - Prob. 14PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (1) (4 points) Give a parametrization c: R R³ of the line through the points P = (1,0,-1) and Q = (-2, 0, 1).arrow_forward7. Show that for R sufficiently large, the polynomial P(z) in Example 3, Sec. 5, satisfies the inequality |P(z)| R. Suggestion: Observe that there is a positive number R such that the modulus of each quotient in inequality (9), Sec. 5, is less than |an|/n when |z| > R.arrow_forward9. Establish the identity 1- 1+z+z² + 2n+1 ... +z" = 1- z (z1) and then use it to derive Lagrange's trigonometric identity: 1 1+ cos cos 20 +... + cos no = + 2 sin[(2n+1)0/2] 2 sin(0/2) (0 < 0 < 2л). Suggestion: As for the first identity, write S = 1+z+z² +...+z" and consider the difference S - zS. To derive the second identity, write z = eie in the first one.arrow_forward
- 8. Prove that two nonzero complex numbers z₁ and Z2 have the same moduli if and only if there are complex numbers c₁ and c₂ such that Z₁ = c₁C2 and Z2 = c1c2. Suggestion: Note that (i≤ exp (101+0) exp (01-02) and [see Exercise 2(b)] 2 02 Ꮎ - = = exp(i01) exp(101+0) exp (i 01 - 02 ) = exp(102). i 2 2arrow_forwardnumerical anaarrow_forward13. If X has the distribution function F(x) = 0 1 12 for x < -1 for -1x < 1 for 1x <3 2 3 for 3≤x≤5 4 1 for x≥5 find (a) P(X ≤3); (b) P(X = 3); (c) P(X < 3); (d) P(X≥1); (e) P(-0.4arrow_forwardTwo measurements are made of some quantity. For the first measurement, the average is 74.4528, the RMS error is 6.7441, and the uncertainty of the mean is 0.9264. For the second one, the average is 76.8415, the standard deviation is 8.3348, and the uncertainty of the mean is 1.1448. The expected value is exactly 75. 13. Express the first measurement in public notation. 14. Is there a significant difference between the two measurements? 1 15. How does the first measurement compare with the expected value? 16. How does the second measurement compare with the expected value?arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardIf you use any chatgpt will downvote.arrow_forwardPlease help I'm a working mom trying to help my son last minute (6th grader)! Need help with the blank ones and check the ones he got with full calculation so we can use it to study! Especially the mixed number fractions cause I'm rusty. Thanks in advance!arrow_forward|| 38 5층-11- 6 4 7 2 6arrow_forward4. Consider the initial value problem y' = 3x(y-1) 1/3, y(xo) = yo. (a) For what points (co, yo) does the IVP have a solution? (b) For what points (xo, yo) does the IVP have a unique solution on some open interval that contains 20? (c) Solve the IVP y' = 3x(y-1) 1/3, y(0) = 9 and determine the largest open interval on which this solution is unique.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY