Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 94P

(a)

To determine

What is the change in the electric potential energy.

(a)

Expert Solution
Check Mark

Answer to Problem 94P

The change in electrical potential energy is 0J_.

Explanation of Solution

Write the equation to find the electric potential energy at point b.

    Ub=q(kqLrL+kqRrR)                                                                                                   (I)

Here, q is the charge, qL is the charge at left side , qR is the charge at right side, rL is the distance between the left and central charge, rR is the distance between charge on right side and central charge.

Both charges are of equal magnitude but sign is opposite.

    qL=qR

Substitute qL for qR in equation (I) and simplify to get Ub

    Ub=kqqL(1rL1rR)                                                                                                         (II)

Similarly find the potential energy at point c.

Rewrite equation (II) to find Uc

    UC=kqqL(1rL1rR)                                                                                                          (III)

Take the difference between equation (II) and (III) to find the difference in potential energy.

    ΔU=UbUC                                                                                                               (IV)

Conclusion

Substitute 8.8988×109Nm2/C2 for k , 4.2nC for q , 10.0nC for qL , 4.00cm for rL and rR in equation (II) to get Ub

    Ub=(8.988×109Nm2/C2)(4.2nC(1C109nC))(14.00cm(1m102cm)14.00cm(1m102cm))=0J

Substitute 8.8988×109Nm2/C2 for k , 4.2nC for q , 10.0nC for qL , 8.00cm for rL and rR in equation (II) to get Ub

    Ub=(8.988×109Nm2/C2)(4.2nC(1C109nC))(18.00cm(1m102cm)18.00cm(1m102cm))=0J

Substitute 0J for Ub and Uc in equation (IV) to get ΔU

    ΔU=0J0J=0J

Therefore, the change in electrical potential energy is 0J_.

(b)

To determine

What is the work required to move charge from point a to point b.

(b)

Expert Solution
Check Mark

Answer to Problem 94P

The work required to move charge from point a to b is 6.3μJ_.

Explanation of Solution

Work done is equal to the change in electrical potential energy.

Write the equation to find the potential energy at point a.

    Ua=q(kqLrL+kqRrR)                                                                                                            (V)

Here, q is the charge, qL is the charge at left side , qR is the charge at right side, rL is the distance between the left and central charge, rR is the distance between charge on right side and central charge.

Both charges are of equal magnitude but sign is opposite.

    qL=qR

Substitute qL for qR in equation (V) and simplify to get Ub

    Ub=kqqL(1rL1rR)                                                                                                        (VI)

Write the equation to find the work done.

    W=UaUb                                                                                                                (VII)

Conclusion:

Substitute 8.8988×109Nm2/C2 for k , 4.2nC for q , 10.0nC for qL , 4.00cm for rL and 12.0cm for rR in equation (VI) to get Ua

    Ua=(8.988×109Nm2/C2)(4.2nC(1C109nC))(14.00cm(1m102cm)112.00cm(1m102cm))=6.3μJ

Substitute 6.3μJ for Ua and 0J for Ub in equation (VII) to get W

    W=6.3μJ0J=6.3μJ

Therefore, The work required to move charge from point a to b is 6.3μJ_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1)  Since it is a conductor, all the charges are on the outside of the ball. 2)  The ball is neutral, so it has no positive or negative charges anywhere. 3)  The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4)  The positive and negative charges are evenly distributed everywhere in the ball.  B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1)  There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2)  Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question  5-9

Chapter 17 Solutions

Physics

Ch. 17.4 - Prob. 17.8PPCh. 17.5 - Prob. 17.5CPCh. 17.5 - Prob. 17.9PPCh. 17.6 - Prob. 17.6CPCh. 17.6 - Prob. 17.10PPCh. 17.6 - Prob. 17.11PPCh. 17.7 - Practice Problem 17.12 Charge and Stored Energy...Ch. 17 - Prob. 1CQCh. 17 - 2. Dry air breaks down for a voltage of about 3000...Ch. 17 - 3. A bird is perched on a high-voltage power line...Ch. 17 - 4. A positive charge is initially at rest in an...Ch. 17 - 5. Points A and B are at the same potential. What...Ch. 17 - Prob. 6CQCh. 17 - 7. Why are all parts of a conductor at the same...Ch. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 10CQCh. 17 - Prob. 11CQCh. 17 - Prob. 12CQCh. 17 - Prob. 13CQCh. 17 - Prob. 14CQCh. 17 - Prob. 15CQCh. 17 - Prob. 16CQCh. 17 - Prob. 17CQCh. 17 - Prob. 18CQCh. 17 - Prob. 19CQCh. 17 - Prob. 20CQCh. 17 - Prob. 21CQCh. 17 - Prob. 22CQCh. 17 - Prob. 1MCQCh. 17 - Prob. 2MCQCh. 17 - Prob. 3MCQCh. 17 - Prob. 4MCQCh. 17 - Prob. 5MCQCh. 17 - Prob. 6MCQCh. 17 - Prob. 7MCQCh. 17 - Prob. 8MCQCh. 17 - Prob. 9MCQCh. 17 - Prob. 10MCQCh. 17 - Prob. 11MCQCh. 17 - Prob. 12MCQCh. 17 - 1. In each of five situations, two point charges...Ch. 17 - 2. Two point charges, +5.0 μC and −2.0 μC, are...Ch. 17 - 3. A hydrogen atom has a single proton at its...Ch. 17 - 4. How much work is done by an applied force that...Ch. 17 - 5. The nucleus of a helium atom contains two...Ch. 17 - 6. Three point charges are located at the corners...Ch. 17 - Problems 7-10. Two point charges ( + 10.0 nC and −...Ch. 17 - Problems 7-10. Two point charges ( + 10.0 nC and −...Ch. 17 - Problems 7-10. Two point charges ( + 10.0 nC and −...Ch. 17 - Problems 7–10. Two point charges ( +10.0 nC and...Ch. 17 - 11. Find the electric potential energy for the...Ch. 17 - 12. In the diagram, how much work is done by the...Ch. 17 - 13. In the diagram, how much work is done by the...Ch. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - 16. A point charge q = + 3.0 nC moves through a...Ch. 17 - 17. An electron is moved from point A, where the...Ch. 17 - 18. Find the electric field and the potential at...Ch. 17 - Prob. 19PCh. 17 - 20. A charge of + 2.0 mC is located at x = 0, y =...Ch. 17 - 21. The electric potential at a distance of 20.0...Ch. 17 - 22. A spherical conductor with a radius of 75.0 cm...Ch. 17 - 23. A hollow metal sphere carries a charge of 6.0...Ch. 17 - 24. An array of four charges is arranged along the...Ch. 17 - 25. At a point P, a distance R0 from a positive...Ch. 17 - 26. Charges of + 2.0 nC and − 1.0 nC are located...Ch. 17 - Prob. 27PCh. 17 - 28. (a) Find the potential at points a and b in...Ch. 17 - 29. (a) In the diagram, what are the potentials at...Ch. 17 - 30. (a) In the diagram, what are the potentials at...Ch. 17 - Prob. 31PCh. 17 - 32. By rewriting each unit in terms of kilograms,...Ch. 17 - 33. Rank points A–E in order of the potential,...Ch. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - 43. A positive point charge is located at the...Ch. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - 46. Point P is at a potential of 500.0 kV, and...Ch. 17 - 47. An electron is accelerated from rest through a...Ch. 17 - 48. As an electron moves through a region of...Ch. 17 - Prob. 49PCh. 17 - 50. An electron beam is deflected upward through...Ch. 17 - 51. In the electron gun of Example 17.8, if the...Ch. 17 - 52. In the electron gun of Example 17.8, if the...Ch. 17 - 53. An electron (charge −e) is projected...Ch. 17 - 54. An alpha particle (charge +2e) moves through a...Ch. 17 - 55. In 1911, Ernest Rutherford discovered the...Ch. 17 - 56. The figure shows a graph of electric potential...Ch. 17 - 57. Repeat Problem 56 for an electron rather than...Ch. 17 - 58. A 2.0 μE capacitor is connected to a 9.0 V...Ch. 17 - 59. The plates of a 15.0 μE capacitor have net...Ch. 17 - 60. If a capacitor has a capacitance of 10.2 μE...Ch. 17 - 61. A parallel plate capacitor has a capacitance...Ch. 17 - 62. A parallel plate capacitor has plates of area...Ch. 17 - 63. A parallel plate capacitor has plates of area...Ch. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68PCh. 17 - Prob. 69PCh. 17 - Prob. 70PCh. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77PCh. 17 - 78. What is the maximum electric energy density...Ch. 17 - Prob. 79PCh. 17 - Prob. 80PCh. 17 - Prob. 81PCh. 17 - Prob. 82PCh. 17 - Prob. 83PCh. 17 - 84. A parallel plate capacitor is composed of two...Ch. 17 - Prob. 85PCh. 17 - 86. A parallel plate capacitor has a charge of...Ch. 17 - Prob. 87PCh. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - Prob. 92PCh. 17 - Prob. 93PCh. 17 - Prob. 94PCh. 17 - Prob. 95PCh. 17 - Prob. 96PCh. 17 - Prob. 97PCh. 17 - Prob. 98PCh. 17 - Prob. 99PCh. 17 - Prob. 100PCh. 17 - Prob. 101PCh. 17 - Prob. 102PCh. 17 - Prob. 103PCh. 17 - Prob. 104PCh. 17 - Prob. 105PCh. 17 - 106. ✦ The potential difference across a cell...Ch. 17 - Prob. 107PCh. 17 - Prob. 108PCh. 17 - Prob. 109PCh. 17 - Prob. 110PCh. 17 - Prob. 111PCh. 17 - Prob. 112PCh. 17 - Prob. 113PCh. 17 - Prob. 114PCh. 17 - Prob. 115PCh. 17 - Prob. 116PCh. 17 - Prob. 117PCh. 17 - Prob. 118PCh. 17 - Prob. 119PCh. 17 - Prob. 120PCh. 17 - Prob. 121P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY