Consider the equation ∆G = ∆G ° + RT ln( Q ). What is the value of ∆ G for a reaction at equilibrium? What does Q equal at equilibrium? At equilibrium, the previous equation reduces to ∆G° = − RT ln( K ). When ∆ G ° > 0, what does it indicate about K ? When ∆G ° < 0, what does it indicate about K? When t ∆ G ° = 0, what does it indicate about K ? ∆G predicts spontaneity for a reaction, whereas ∆G ° predicts the equilibrium position. Explain what this statement means. Under what conditions can you use ∆ G ° to determine the spontaneity of a reaction?
Consider the equation ∆G = ∆G ° + RT ln( Q ). What is the value of ∆ G for a reaction at equilibrium? What does Q equal at equilibrium? At equilibrium, the previous equation reduces to ∆G° = − RT ln( K ). When ∆ G ° > 0, what does it indicate about K ? When ∆G ° < 0, what does it indicate about K? When t ∆ G ° = 0, what does it indicate about K ? ∆G predicts spontaneity for a reaction, whereas ∆G ° predicts the equilibrium position. Explain what this statement means. Under what conditions can you use ∆ G ° to determine the spontaneity of a reaction?
Solution Summary: The author explains that thermodynamics is associated with heat, temperature, and its relation with energy and work, but it gives no information about the time required for the process.
Consider the equation ∆G = ∆G° + RT ln(Q). What is the value of ∆G for a reaction at equilibrium? What does Q equal at equilibrium? At equilibrium, the previous equation reduces to ∆G° = −RT ln(K). When ∆G° > 0, what does it indicate about K? When ∆G° < 0, what does it indicate about K? When t ∆G° = 0, what does it indicate about K? ∆G predicts spontaneity for a reaction, whereas ∆G° predicts the equilibrium position. Explain what this statement means. Under what conditions can you use ∆G° to determine the spontaneity of a reaction?
Identifying the major species in weak acid or weak base equilibria
Your answer is incorrect.
• Row 2: Your answer is incorrect.
• Row 3: Your answer is incorrect.
• Row 6: Your answer is incorrect.
0/5
The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at
equilibrium. You can leave out water itself.
Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the
formulas of the species that will act as neither acids nor bases in the 'other' row.
You will find it useful to keep in mind that HF is a weak acid.
acids:
HF
0.1 mol of NaOH is added to
1.0 L of a 0.7M HF
solution.
bases:
0.13 mol of HCl is added to
1.0 L of a solution that is
1.0M in both HF and KF.
Exponent
other:
F
acids: HF
bases: F
other:
K
1
0,0,...
?
000
18
Ar
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ
Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions
about this system:
?
rise
Under these conditions, will the pressure of NOCI tend to rise or fall?
x10
fall
Is it possible to reverse this tendency by adding NO?
In other words, if you said the pressure of NOCI will tend to rise, can that
be changed to a tendency to fall by adding NO? Similarly, if you said the
pressure of NOCI will tend to fall, can that be changed to a tendency to
rise by adding NO?
yes
no
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO needed to reverse it.
Round your answer to 2 significant digits.
0.035 atm
✓
G
00.
18
Ar
Highlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area.
HO-
HO-
-0
OH
OH
HO
NG
HO-
HO-
OH
OH
OH
OH
NG
OH
Chapter 17 Solutions
OWLv2 with MindTap Reader, 4 terms (24 months) Printed Access Card for Zumdahl/Zumdahl's Chemistry, 9th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY