
EBK BIG JAVA: EARLY OBJECTS, INTERACTIV
6th Edition
ISBN: 8220102010314
Author: Horstmann
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 8PE
Program Plan Intro
Computing average value of the elements in the binary tree
Program plan:
BinaryTree.java:
- Define the class “BinaryTree.java”.
- Declare the private variable root from class “Node”.
- Defining the constructor “BinaryTree” to generate an empty tree.
- Assign root to null.
- Define the parameterized constructor “BinaryTree(object rootData)” to generate a tree one root element.
- Generate root node.
- Define the parameterized constructor “public BinaryTree(Object rootData, BinaryTree left, BinaryTree right)”.
- Generates root and children nodes.
- Define the “preorder()” method for both tree with many nodes and a tree with one node.
- For a tree with one node and no children,
- “preorder(root,v)” is called.
- For a tree with multiple nodes,
- If (node == null) returns v.visit(node.data);
- If (node.left != null) then, preorder(node.left, v);
- If (node.right != null) then, preorder(node.right, v);
- For a tree with multiple nodes,
- “preorder(root,v)” is called.
- For a tree with one node and no children,
- Define the “inorder()” method for both tree with many nodes and a tree with one node.
- For a tree with one node and no children,
- “inorder(root,v)” is called.
- For a tree with multiple nodes,
- If (node.left != null) then, inorder(node.left, v) and v.visit(node.data);
- If (node.right != null) then, inorder(node.right, v);
- For a tree with multiple nodes,
- “inorder(root,v)” is called.
- For a tree with one node and no children,
- Define the “postorder()” method for both tree with many nodes and a tree with one node.
- For a tree with one node and no children,
- “postorder(root,v)” is called.
- For a tree with multiple nodes,
- If (node.left != null) then, postorder(v, node.left);
- If (node.right != null) then, postorder(v, node.right) and v.visit(node.data);
- For a tree with multiple nodes,
- “postorder(root,v)” is called.
- For a tree with one node and no children,
- Define the class “Node”.
- Declare “object data”.
- Declare “Node left”.
- Declare “Node right”.
- Define the function static “height()”
- If (n == null) returns the null value.
- Otherwise returns the value 1 + Math.max(height(n.left), height(n.right)).
- Define the function “height()”
- Returns the height of this tree.
- Define “isEmpty()” function:
- It checks whether this tree is empty.
- Return true value if this tree is empty.
- Define the “data()” function.
- Gets the data at the root of this tree.
- Returns the root data.
- Define “left()” and “right()” function.
- “left()” function return the left child of the root.
- “right()” function return the right child of the root.
Visitor.java:
- Define interface “Visitor”
- Calls the “visit(object data)”
BinaryTreeTester.java:
- Import the required header files.
- Define “BinaryTreeTester” class.
- Define the “main()” function.
- Create an object “questionTree” for “BinaryTree” with tree values.
- Define a class “Averager” which implements the “Visitor” class.
- Define “visit()” method which compute the sum of elements of the binary tree.
- Define “average()” method which computes the average value using “sum” value .
- Create object for “Averager” class and call the “inorder()” function by passing the “Averager” class object.
- Print the value of average.
- Define the “main()” function.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I want to solve 13.2 using matlab please help
a) Show a possible trace of the OSPF algorithm for computing the routing table in Router 2 forthis network.b) Show the messages used by RIP to compute routing tables.
using r language to answer question 4 Question 4: Obtain a 95% standard normal bootstrap confidence interval, a 95% basic bootstrap confidence interval, and a percentile confidence interval for the ρb12 in Question 3.
Chapter 17 Solutions
EBK BIG JAVA: EARLY OBJECTS, INTERACTIV
Ch. 17.1 - Prob. 1SCCh. 17.1 - Prob. 2SCCh. 17.1 - Prob. 3SCCh. 17.1 - Prob. 4SCCh. 17.1 - Prob. 5SCCh. 17.1 - Prob. 6SCCh. 17.1 - Prob. 7SCCh. 17.2 - Prob. 8SCCh. 17.2 - Prob. 9SCCh. 17.2 - Prob. 10SC
Ch. 17.2 - Prob. 11SCCh. 17.2 - Prob. 12SCCh. 17.3 - Prob. 13SCCh. 17.3 - Prob. 14SCCh. 17.3 - Prob. 15SCCh. 17.3 - Prob. 16SCCh. 17.3 - Prob. 17SCCh. 17.3 - Prob. 18SCCh. 17.4 - Prob. 19SCCh. 17.4 - Prob. 20SCCh. 17.4 - Prob. 21SCCh. 17.4 - Prob. 22SCCh. 17.4 - Prob. 23SCCh. 17.4 - Prob. 24SCCh. 17.5 - Prob. 25SCCh. 17.5 - Prob. 26SCCh. 17.5 - Prob. 27SCCh. 17.5 - Prob. 28SCCh. 17.5 - Prob. 29SCCh. 17.5 - Prob. 30SCCh. 17.6 - Prob. 31SCCh. 17.6 - Prob. 32SCCh. 17.6 - Prob. 33SCCh. 17.6 - Prob. 34SCCh. 17.6 - Prob. 35SCCh. 17.7 - Prob. 36SCCh. 17.7 - Prob. 37SCCh. 17.7 - Prob. 38SCCh. 17.7 - Prob. 39SCCh. 17.7 - Prob. 40SCCh. 17 - Prob. 1RECh. 17 - Prob. 2RECh. 17 - Prob. 3RECh. 17 - Prob. 4RECh. 17 - Prob. 5RECh. 17 - Prob. 6RECh. 17 - Prob. 7RECh. 17 - Prob. 8RECh. 17 - Prob. 9RECh. 17 - Prob. 10RECh. 17 - Prob. 11RECh. 17 - Prob. 12RECh. 17 - Prob. 13RECh. 17 - Prob. 14RECh. 17 - Prob. 16RECh. 17 - Prob. 18RECh. 17 - Prob. 19RECh. 17 - Prob. 20RECh. 17 - Prob. 21RECh. 17 - Prob. 22RECh. 17 - Prob. 23RECh. 17 - Prob. 24RECh. 17 - Prob. 25RECh. 17 - Prob. 26RECh. 17 - Prob. 27RECh. 17 - Prob. 28RECh. 17 - Prob. 1PECh. 17 - Prob. 2PECh. 17 - Prob. 3PECh. 17 - Prob. 4PECh. 17 - Prob. 5PECh. 17 - Prob. 6PECh. 17 - Prob. 7PECh. 17 - Prob. 8PECh. 17 - Prob. 9PECh. 17 - Prob. 10PECh. 17 - Prob. 11PECh. 17 - Prob. 12PECh. 17 - Prob. 13PECh. 17 - Prob. 1PPCh. 17 - Prob. 2PPCh. 17 - Prob. 3PPCh. 17 - Prob. 4PPCh. 17 - Prob. 5PPCh. 17 - Prob. 6PPCh. 17 - Prob. 7PPCh. 17 - Prob. 8PPCh. 17 - Prob. 9PPCh. 17 - Prob. 10PPCh. 17 - Prob. 11PP
Knowledge Booster
Similar questions
- using r language Obtain a bootstrap t confidence interval estimate for the correlation statistic in Example 8.2 (law data in bootstrap).arrow_forwardusing r language Compute a jackknife estimate of the bias and the standard error of the correlation statistic in Example 8.2.arrow_forwardusing r languagearrow_forward
- using r languagearrow_forwardThe assignment here is to write an app using a database named CIT321 with a collection named students; we will provide a CSV file of the data. You need to use Vue.js to display 2 pages. You should know that this assignment is similar, all too similar in fact, to the cars4sale2 example in the lecture notes for Vue.js 2. You should study that program first. If you figure out cars4sale2, then program 6 will be extremely straightforward. It is not my intent do drop a ton of new material here in the last few days of class. The database contains 51 documents. The first rows of the CSV file look like this: sid last_name 1 Astaire first_name Humphrey CIT major hrs_attempted gpa_points 10 34 2 Bacall Katharine EET 40 128 3 Bergman Bette EET 42 97 4 Bogart Cary CIT 11 33 5 Brando James WEB 59 183 6 Cagney Marlon CIT 13 40 GPA is calculated as gpa_points divided by hrs_attempted. GPA points would have been arrived at by adding 4 points for each credit hour of A, 3 points for each credit hour of…arrow_forwardI need help to solve the following case, thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education

Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON

Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education