GO In Fig. 17-46, sound of wavelength 0.850 m is emitted isotropically by point source S . Sound ray 1 extends directly to detector D , at distance L = 10.0 m. Sound ray 2 extends to D via a reflection (effectively, a “bouncing”) of the sound at a flat surface. That reflection occurs on a perpendicular bisector to the SD line, at distance d from the line. Assume that the reflection shifts the sound wave by 0.500 λ . For what least value of d (other than zero) do the direct sound and the reflected sound arrive at D (a) exactly out of phase and (b) exactly in phase? Figure 17-46 Problem 79.
GO In Fig. 17-46, sound of wavelength 0.850 m is emitted isotropically by point source S . Sound ray 1 extends directly to detector D , at distance L = 10.0 m. Sound ray 2 extends to D via a reflection (effectively, a “bouncing”) of the sound at a flat surface. That reflection occurs on a perpendicular bisector to the SD line, at distance d from the line. Assume that the reflection shifts the sound wave by 0.500 λ . For what least value of d (other than zero) do the direct sound and the reflected sound arrive at D (a) exactly out of phase and (b) exactly in phase? Figure 17-46 Problem 79.
GO In Fig. 17-46, sound of wavelength 0.850 m is emitted isotropically by point source S. Sound ray 1 extends directly to detector D, at distance L = 10.0 m. Sound ray 2 extends to D via a reflection (effectively, a “bouncing”) of the sound at a flat surface. That reflection occurs on a perpendicular bisector to the SD line, at distance d from the line. Assume that the reflection shifts the sound wave by 0.500λ. For what least value of d (other than zero) do the direct sound and the reflected sound arrive at D (a) exactly out of phase and (b) exactly in phase?
air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cm
No chatgpt pls will upvote
13.87 ... Interplanetary Navigation. The most efficient way
to send a spacecraft from the earth to another planet is by using a
Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure
and destination planets are circular, the Hohmann transfer orbit is an
elliptical orbit whose perihelion and aphelion are tangent to the
orbits of the two planets. The rockets are fired briefly at the depar-
ture planet to put the spacecraft into the transfer orbit; the spacecraft
then coasts until it reaches the destination planet. The rockets are
then fired again to put the spacecraft into the same orbit about the
sun as the destination planet. (a) For a flight from earth to Mars, in
what direction must the rockets be fired at the earth and at Mars: in
the direction of motion, or opposite the direction of motion? What
about for a flight from Mars to the earth? (b) How long does a one-
way trip from the the earth to Mars take, between the firings of the
rockets? (c) To reach Mars from the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.