COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 76PE
To determine

(a)

The intensity reflection coefficient between transducer material and air.

Expert Solution
Check Mark

Answer to Problem 76PE

The intensity reflection coefficient between transducer material and air is 1.

Explanation of Solution

Given:

Refer Table [17.8]

The value of acoustic impedance of transducer material is, Zt=30.8×106kg/m2s.

The value of acoustic impedance of air is, Za=429kg/m2s.

Formula used:

The intensity reflection coefficient betweenthe transducer material and air is given by

  a=( Z t Z a )2( Z t + Z a )2

Calculation:

The intensity reflection coefficient between transducer material and air is calculated as follows:

  a= ( Z t Z a )2 ( Z t + Z a )2= ( 30.8× 10 6 kg/ m 2 s 429 kg/ m 2 s )2 ( 30.8× 10 6 kg/ m 2 s +429 kg/ m 2 s )2=0.9991

Conclusion:

The intensity reflection coefficient between transducer material and air is 1.

To determine

(b)

The intensity reflection coefficient between the transducer material and gel which is identical to water.

Expert Solution
Check Mark

Answer to Problem 76PE

The intensity reflection coefficient between the transducer material and gel which is identical to water is 0.823.

Explanation of Solution

Given:

Refer Table [17.8]

The value of acoustic impedance of gel which is identical to water is, Zw=1.5×106kg/m2s.

Formula used:

The intensity reflection coefficient between the transducer material and gel which is identical to water is given by

  a=( Z t Z w )2( Z t + Z w )2

Calculation:

The intensity reflection coefficient between the transducer material and gel which is identical to water is calculated as follows:

  a= ( Z t Z w )2 ( Z t + Z w )2= ( 30.8× 10 6 kg/ m 2 s 1.5× 10 6 kg/ m 2 s )2 ( 30.8× 10 6 kg/ m 2 s +1.5× 10 6 kg/ m 2 s )2=0.823

Conclusion:

The intensity reflection coefficient between transducer material and gel which is identical to water is 0.823.

To determine

(c)

The reason behind the use of gel.

Expert Solution
Check Mark

Explanation of Solution

Introduction:

In a medical application, during ultrasound a transducer is used to emit the ultrasonic waves which enter into the body due to which high vibration are produced by the piezoelectric effect. The entered waves produce voltage pulses and are recorded for examination.

There is air between the transducer and the body, but during examination, the air is replaced by the gel. This is replaced due to the fact that the reflections also reduced with the air. The gel produces minimum reflection during ultrasound and produce accurate result.

Conclusion:

The gel is used to minimize the reflections.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Given the task of maximizing the transmission of sound waves from water into steel, (a) what is the optimum characteristic impedance of the material to be placed between the water and the steel? (b) What must be the density of, and sound speed in, a layer of 1 cm thickness that will produce 100% transmission at 20 kHz?
We are given that the time difference between Path A and B is 3.6 microseconds.
The ionosphere is the ionized part of the upper layer of the earth's atmosphere. The air molecules there are ionized by solar radiation. This layer of the atmosphere is a fairly good conductor, and radio waves are often "bounced" off the bottom of the ionosphere back toward the earth, in a process called skip or skywave propagation. Due to these properties, the space between the surface of the earth and the bottom of the ionosphere acts like a closed wave guide that will exhibit resonance for very low frequencies. Resonance excitations in the cavity are caused by lightning strikes, which hit the earth about 50 to 100 times a second. These low atmospheric resonance frequencies are known as Schumann resonances, named after the physicist Winfried Otto Schumann, who first calculated them in 1952. There are several Schumann frequencies that occur in the low frequency background, which ranges from 3 to 60 Hz. The highest intensity resonance mode (called the fundamental) occurs at 7.83 Hz.…

Chapter 17 Solutions

COLLEGE PHYSICS

Ch. 17 - Why can a hearing test show that your threshold of...Ch. 17 - If audible sound follows a rule of thumb similar...Ch. 17 - Elephants and whales are known to use infrasound...Ch. 17 - It is more difficult to obtain a high—resolution...Ch. 17 - Suppose you read mat 210dB ultrasound is being...Ch. 17 - When poked by a spear, an operatic soprano lets...Ch. 17 - What frequency sound has a 0.10m wavelength when...Ch. 17 - Calculate the speed of sound on a day when a 1500...Ch. 17 - Prob. 4PECh. 17 - Show mat the speed of sound in 20.0°C air is 343...Ch. 17 - Air temperature in the Sahara Desert can reach...Ch. 17 - Dolphins make sounds in air and water. What is the...Ch. 17 - A sonar echo returns to a submarine 1.20 s after...Ch. 17 - (a) If a submarine’s sonar can measure echo times...Ch. 17 - A physicist a1 a fireworks display times the lag...Ch. 17 - Prob. 11PECh. 17 - What is the intensity in watts per meter squared...Ch. 17 - The warning tag on a lawn mower states that it...Ch. 17 - A sound wave traveling in 20°C air has a pressure...Ch. 17 - What intensity level does the sound in the...Ch. 17 - What sound intensity level in dB is produced by...Ch. 17 - Show that an intensity of 1012 W/m2 is the same as...Ch. 17 - (a) What is the decibel level of a sound that is...Ch. 17 - (a) What is the intensity of a sound that has a...Ch. 17 - (a) How much more intense is a sound that has a...Ch. 17 - People with good hearing can perceive sounds as...Ch. 17 - If a large housefly 3.0 m away from you makes a...Ch. 17 - Ten cars in a circle at a boom box competition...Ch. 17 - The amplitude of a sound wave is measured in terms...Ch. 17 - If a sound intensity level of 0 dB at 1000 Hz...Ch. 17 - An 8hour exposure to a sound intensity level of...Ch. 17 - (a) Ear trumpets were never very common, but they...Ch. 17 - Sound is more effectively transmitted into a...Ch. 17 - Loudspeakers can produce intense sounds with...Ch. 17 - (a) What frequency is received by a person...Ch. 17 - (a) At an air show a jet flies directly toward the...Ch. 17 - What frequency is received by a mouse just before...Ch. 17 - A spectator at a parade receives an 888-Hz tone...Ch. 17 - A commuter train blows its 200Hz horn as it...Ch. 17 - Can you perceive the shift in frequency produced...Ch. 17 - Two eagles fly directly toward one another. The...Ch. 17 - What is the minimum speed at which a source must...Ch. 17 - A “showy" custom—built car has two brass horns...Ch. 17 - What beat frequencies will be present: (a) If the...Ch. 17 - What beat frequencies result if a piano hammer...Ch. 17 - A piano tuner hears a heat every 2.00 s when...Ch. 17 - (a) What is the fundamental frequency of a...Ch. 17 - If a wind instrument, such as a tuba, has a...Ch. 17 - What are the first three overtones of a bassoon...Ch. 17 - How long must a fiute be in order to have a...Ch. 17 - What length should an oboe have to produce a...Ch. 17 - What is the length of a tube that has a...Ch. 17 - (a) Find the length of an organ pipe closed at one...Ch. 17 - By what fraction will the frequencies produced by...Ch. 17 - Prob. 50PECh. 17 - Calculate the first overtone in an ear canal,...Ch. 17 - Prob. 52PECh. 17 - (a) Students in a physics lab are asked to find...Ch. 17 - What frequencies will a 1.80-m—long tube produce...Ch. 17 - The factor of 1012 in the range of intensities to...Ch. 17 - The frequencies to which the ear responds vary by...Ch. 17 - What are the closest frequencies to 500 Hz that an...Ch. 17 - Can the average person tell that a 2002-Hz sound...Ch. 17 - If your radio is producing an average sound...Ch. 17 - Can you tell that your roommate turned up the...Ch. 17 - Prob. 61PECh. 17 - What sound intensity levels must sounds of...Ch. 17 - What is me approximate sound intensity level in...Ch. 17 - (a) What are the loudnesses in phons of sounds...Ch. 17 - Suppose a person has a 50—UB hearing loss at all...Ch. 17 - If a woman needs an amplification of 5.01012 times...Ch. 17 - (a) What is the intensity in watts per meter...Ch. 17 - (a) Find the intensity in watts per meter squared...Ch. 17 - A person has a hearing threshold 10 dB above...Ch. 17 - A child has a hearing loss of 60 dB near 5000 Hz,...Ch. 17 - What is the ratio of intensi?es of two sounds of...Ch. 17 - What is the sound intensity level in decibels of...Ch. 17 - Is 155—dB ultrasound in the range at intensities...Ch. 17 - Find the sound intensity level in decibels of...Ch. 17 - The time delay between transmission and the...Ch. 17 - Prob. 76PECh. 17 - (a) Calculate the minimum frequency of ultrasound...Ch. 17 - (a) Find the size of the smallest detail...Ch. 17 - (a) Echo times are measured by diagnostic...Ch. 17 - (a) How far apart are two layers of tissue that...Ch. 17 - (a) A bat uses ultrasound to find its way among...Ch. 17 - A dolphin is able to tell in the dark that the...Ch. 17 - A diagnostic ultrasound echo is re?ected from...Ch. 17 - Ultrasound reflected from an oncoming bloodstream...Ch. 17 - Prob. 1TPCh. 17 - Prob. 3TPCh. 17 - Prob. 4TPCh. 17 - Prob. 5TPCh. 17 - Prob. 6TPCh. 17 - Prob. 7TPCh. 17 - Prob. 8TPCh. 17 - Prob. 9TPCh. 17 - Prob. 10TPCh. 17 - Prob. 11TPCh. 17 - Prob. 12TPCh. 17 - Prob. 13TPCh. 17 - Prob. 15TPCh. 17 - Prob. 16TPCh. 17 - Prob. 17TPCh. 17 - Prob. 18TPCh. 17 - Prob. 19TPCh. 17 - Prob. 20TPCh. 17 - Prob. 21TPCh. 17 - Prob. 22TP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY