COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 21TP
To determine
The frequency with which a standing wave with one antinode that will now be formed on the string.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
no ai please
A block of mass m₁ = 1.85 kg and a block of mass m₂
is 0.360 for both blocks.
=
m
M, R
m2
Ꮎ
5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction
(a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.)
x m/s²
(b) Determine the tensions in the string on both sides of the pulley.
left of the pulley
× N
right of the pulley
X N
Enter a number.
What is the error determined by the 2/3 rule?
Chapter 17 Solutions
COLLEGE PHYSICS
Ch. 17 - How do sound vibrations of atoms differ from...Ch. 17 - When sound passes from one medium to another where...Ch. 17 - Six members at a synchronized swim team weal...Ch. 17 - A community is concerned about a plan to bring...Ch. 17 - Is the Doppler shift real or just a sensory...Ch. 17 - Due to eficiency considerations related to its bow...Ch. 17 - When you hear a sonic boom, you often cannot see...Ch. 17 - How does an unamplified guitar produce sounds so...Ch. 17 - You are given two wind instruments of identical...Ch. 17 - What is the difference between an overtone and a...
Ch. 17 - Why can a hearing test show that your threshold of...Ch. 17 - If audible sound follows a rule of thumb similar...Ch. 17 - Elephants and whales are known to use infrasound...Ch. 17 - It is more difficult to obtain a high—resolution...Ch. 17 - Suppose you read mat 210dB ultrasound is being...Ch. 17 - When poked by a spear, an operatic soprano lets...Ch. 17 - What frequency sound has a 0.10m wavelength when...Ch. 17 - Calculate the speed of sound on a day when a 1500...Ch. 17 - Prob. 4PECh. 17 - Show mat the speed of sound in 20.0°C air is 343...Ch. 17 - Air temperature in the Sahara Desert can reach...Ch. 17 - Dolphins make sounds in air and water. What is the...Ch. 17 - A sonar echo returns to a submarine 1.20 s after...Ch. 17 - (a) If a submarine’s sonar can measure echo times...Ch. 17 - A physicist a1 a fireworks display times the lag...Ch. 17 - Prob. 11PECh. 17 - What is the intensity in watts per meter squared...Ch. 17 - The warning tag on a lawn mower states that it...Ch. 17 - A sound wave traveling in 20°C air has a pressure...Ch. 17 - What intensity level does the sound in the...Ch. 17 - What sound intensity level in dB is produced by...Ch. 17 - Show that an intensity of 1012 W/m2 is the same as...Ch. 17 - (a) What is the decibel level of a sound that is...Ch. 17 - (a) What is the intensity of a sound that has a...Ch. 17 - (a) How much more intense is a sound that has a...Ch. 17 - People with good hearing can perceive sounds as...Ch. 17 - If a large housefly 3.0 m away from you makes a...Ch. 17 - Ten cars in a circle at a boom box competition...Ch. 17 - The amplitude of a sound wave is measured in terms...Ch. 17 - If a sound intensity level of 0 dB at 1000 Hz...Ch. 17 - An 8hour exposure to a sound intensity level of...Ch. 17 - (a) Ear trumpets were never very common, but they...Ch. 17 - Sound is more effectively transmitted into a...Ch. 17 - Loudspeakers can produce intense sounds with...Ch. 17 - (a) What frequency is received by a person...Ch. 17 - (a) At an air show a jet flies directly toward the...Ch. 17 - What frequency is received by a mouse just before...Ch. 17 - A spectator at a parade receives an 888-Hz tone...Ch. 17 - A commuter train blows its 200Hz horn as it...Ch. 17 - Can you perceive the shift in frequency produced...Ch. 17 - Two eagles fly directly toward one another. The...Ch. 17 - What is the minimum speed at which a source must...Ch. 17 - A “showy" custom—built car has two brass horns...Ch. 17 - What beat frequencies will be present: (a) If the...Ch. 17 - What beat frequencies result if a piano hammer...Ch. 17 - A piano tuner hears a heat every 2.00 s when...Ch. 17 - (a) What is the fundamental frequency of a...Ch. 17 - If a wind instrument, such as a tuba, has a...Ch. 17 - What are the first three overtones of a bassoon...Ch. 17 - How long must a fiute be in order to have a...Ch. 17 - What length should an oboe have to produce a...Ch. 17 - What is the length of a tube that has a...Ch. 17 - (a) Find the length of an organ pipe closed at one...Ch. 17 - By what fraction will the frequencies produced by...Ch. 17 - Prob. 50PECh. 17 - Calculate the first overtone in an ear canal,...Ch. 17 - Prob. 52PECh. 17 - (a) Students in a physics lab are asked to find...Ch. 17 - What frequencies will a 1.80-m—long tube produce...Ch. 17 - The factor of 1012 in the range of intensities to...Ch. 17 - The frequencies to which the ear responds vary by...Ch. 17 - What are the closest frequencies to 500 Hz that an...Ch. 17 - Can the average person tell that a 2002-Hz sound...Ch. 17 - If your radio is producing an average sound...Ch. 17 - Can you tell that your roommate turned up the...Ch. 17 - Prob. 61PECh. 17 - What sound intensity levels must sounds of...Ch. 17 - What is me approximate sound intensity level in...Ch. 17 - (a) What are the loudnesses in phons of sounds...Ch. 17 - Suppose a person has a 50—UB hearing loss at all...Ch. 17 - If a woman needs an amplification of 5.01012 times...Ch. 17 - (a) What is the intensity in watts per meter...Ch. 17 - (a) Find the intensity in watts per meter squared...Ch. 17 - A person has a hearing threshold 10 dB above...Ch. 17 - A child has a hearing loss of 60 dB near 5000 Hz,...Ch. 17 - What is the ratio of intensi?es of two sounds of...Ch. 17 - What is the sound intensity level in decibels of...Ch. 17 - Is 155—dB ultrasound in the range at intensities...Ch. 17 - Find the sound intensity level in decibels of...Ch. 17 - The time delay between transmission and the...Ch. 17 - Prob. 76PECh. 17 - (a) Calculate the minimum frequency of ultrasound...Ch. 17 - (a) Find the size of the smallest detail...Ch. 17 - (a) Echo times are measured by diagnostic...Ch. 17 - (a) How far apart are two layers of tissue that...Ch. 17 - (a) A bat uses ultrasound to find its way among...Ch. 17 - A dolphin is able to tell in the dark that the...Ch. 17 - A diagnostic ultrasound echo is re?ected from...Ch. 17 - Ultrasound reflected from an oncoming bloodstream...Ch. 17 - Prob. 1TPCh. 17 - Prob. 3TPCh. 17 - Prob. 4TPCh. 17 - Prob. 5TPCh. 17 - Prob. 6TPCh. 17 - Prob. 7TPCh. 17 - Prob. 8TPCh. 17 - Prob. 9TPCh. 17 - Prob. 10TPCh. 17 - Prob. 11TPCh. 17 - Prob. 12TPCh. 17 - Prob. 13TPCh. 17 - Prob. 15TPCh. 17 - Prob. 16TPCh. 17 - Prob. 17TPCh. 17 - Prob. 18TPCh. 17 - Prob. 19TPCh. 17 - Prob. 20TPCh. 17 - Prob. 21TPCh. 17 - Prob. 22TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…arrow_forwardFind the current in 5.00 and 7.00 Ω resistors. Please explain all reasoningarrow_forwardFind the amplitude, wavelength, period, and the speed of the wave.arrow_forward
- A long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains 6500 turns per meter of length. Determine the emf induced in the solenoid when the current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s. Number Unitsarrow_forwardA coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forwardReview Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forward
- A camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forward
- In a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forwardDon't use ai to answer I will report you answerarrow_forwardA shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License