
Finite Mathematics and Calculus with Applications (10th Edition)
10th Edition
ISBN: 9780321979407
Author: Margaret L. Lial, Raymond N. Greenwell, Nathan P. Ritchey
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 6RE
To determine
Whether the statement “if the function
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the maximum and minimum values of the function f(x, y) = e² subject to ï³ + y³ = 128
Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist.
Maximum value:
A chemical manufacturing plant can produce x units of chemical Z given p units of chemical P and 7 units
of chemical R, where:
z = 140p0.6,0.4
Chemical P costs $300 a unit and chemical R costs $1,500 a unit. The company wants to produce as many
units of chemical Z as possible with a total budget of $187,500.
A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z
subject to the budgetary constraint?
Units of chemical P, p =
Units of chemical R, r =
B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your
answer to the nearest whole unit.)
Max production, z=
units
A firm manufactures a commodity at two different factories, Factory X and Factory Y. The total cost (in
dollars) of manufacturing depends on the quantities, and y produced at each factory, respectively, and is
expressed by the joint cost function:
C(x, y) = x² + xy +4y²+400
A) If the company's objective is to produce 1,900 units per month while minimizing the total monthly cost
of production, how many units should be produced at each factory? (Round your answer to whole units, i.e.
no decimal places.)
To minimize costs, the company should produce:
units at Factory X and
units at Factory Y
B) For this combination of units, their minimal costs will be
enter any commas in your answer.)
Question Help: Video
dollars. (Do not
Chapter 17 Solutions
Finite Mathematics and Calculus with Applications (10th Edition)
Ch. 17.1 - For the function in Example 1, find f(2, 3)....Ch. 17.1 - Prob. 2YTCh. 17.1 - Prob. 3YTCh. 17.1 - Prob. 4YTCh. 17.1 - Prob. 1WECh. 17.1 - Prob. 2WECh. 17.1 - Prob. 3WECh. 17.1 - Prob. 4WECh. 17.1 - Prob. 5WECh. 17.1 - Prob. 6WE
Ch. 17.1 - Let f(x, y) = 2x 3y + 5. Find the following....Ch. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - Prob. 5ECh. 17.1 - Prob. 6ECh. 17.1 - Prob. 7ECh. 17.1 - Prob. 8ECh. 17.1 - Graph the first-octant portion of each plane. 9.2x...Ch. 17.1 - Prob. 10ECh. 17.1 - Prob. 11ECh. 17.1 - Prob. 12ECh. 17.1 - Prob. 13ECh. 17.1 - Prob. 14ECh. 17.1 - Prob. 15ECh. 17.1 - Prob. 16ECh. 17.1 - Prob. 17ECh. 17.1 - Prob. 18ECh. 17.1 - Prob. 19ECh. 17.1 - Prob. 20ECh. 17.1 - Prob. 21ECh. 17.1 - Prob. 22ECh. 17.1 - Match each equation in Exercises 2328 with its...Ch. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Match each equation in Exercises 2328 with its...Ch. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - Prob. 29ECh. 17.1 - Prob. 30ECh. 17.1 - Prob. 31ECh. 17.1 - Prob. 32ECh. 17.1 - Prob. 33ECh. 17.1 - Prob. 34ECh. 17.1 - Production Find the level curve at a production of...Ch. 17.1 - Prob. 36ECh. 17.1 - Prob. 37ECh. 17.1 - Individual Retirement Accounts The multiplier...Ch. 17.1 - Individual Retirement Accounts The multiplier...Ch. 17.1 - Heat Loss The rate of heal loss (in watts) in...Ch. 17.1 - Prob. 41ECh. 17.1 - Prob. 42ECh. 17.1 - Pollution Intolerance According to research at the...Ch. 17.1 - Dengue Fever In tropical regions, dengue fever is...Ch. 17.1 - Prob. 45ECh. 17.1 - Prob. 46ECh. 17.1 - Prob. 47ECh. 17.1 - Prob. 48ECh. 17.1 - Prob. 49ECh. 17.1 - Prob. 50ECh. 17.1 - Prob. 51ECh. 17.2 - Prob. 1YTCh. 17.2 - Prob. 2YTCh. 17.2 - Prob. 3YTCh. 17.2 - Prob. 4YTCh. 17.2 - Prob. 1WECh. 17.2 - Prob. 2WECh. 17.2 - Prob. 3WECh. 17.2 - Prob. 4WECh. 17.2 - Prob. 5WECh. 17.2 - Prob. 6WECh. 17.2 - Prob. 7WECh. 17.2 - Prob. 8WECh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - Prob. 5ECh. 17.2 - Prob. 6ECh. 17.2 - Prob. 7ECh. 17.2 - Prob. 8ECh. 17.2 - Prob. 9ECh. 17.2 - Prob. 10ECh. 17.2 - Prob. 11ECh. 17.2 - Prob. 12ECh. 17.2 - Prob. 13ECh. 17.2 - Prob. 14ECh. 17.2 - Prob. 15ECh. 17.2 - Prob. 16ECh. 17.2 - Prob. 17ECh. 17.2 - Prob. 18ECh. 17.2 - Prob. 19ECh. 17.2 - Prob. 20ECh. 17.2 - Prob. 21ECh. 17.2 - Prob. 22ECh. 17.2 - Prob. 23ECh. 17.2 - Prob. 24ECh. 17.2 - Prob. 25ECh. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - Prob. 39ECh. 17.2 - Prob. 40ECh. 17.2 - Find fx(x,y,z),fy(x,y,z),fz(x,y,z), and fyz(x,y,z)...Ch. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Business and Economics 45.Manufacturing Cost...Ch. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - Prob. 49ECh. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.2 - Prob. 61ECh. 17.2 - Prob. 62ECh. 17.2 - Drug Reaction The reaction to x units of a drug t...Ch. 17.2 - Prob. 64ECh. 17.2 - Prob. 66ECh. 17.2 - Prob. 67ECh. 17.2 - Prob. 68ECh. 17.2 - Gravitational Attraction The gravitational...Ch. 17.2 - Velocity In 1931, Albert Einstein developed the...Ch. 17.2 - Prob. 71ECh. 17.3 - Prob. 1YTCh. 17.3 - Prob. 2YTCh. 17.3 - Prob. 1WECh. 17.3 - Prob. 2WECh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Figures (a)(f) show the graphs of the functions...Ch. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.3 - Prob. 36ECh. 17.3 - Prob. 37ECh. 17.3 - Prob. 38ECh. 17.3 - Prob. 39ECh. 17.3 - Prob. 40ECh. 17.3 - Prob. 42ECh. 17.4 - Prob. 1YTCh. 17.4 - Prob. 1WECh. 17.4 - Prob. 2WECh. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Find the relative maxima or minima in Exercises...Ch. 17.4 - Prob. 11ECh. 17.4 - Find positive numbers x and y such that x + y = 48...Ch. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Find the maximum and minimum values of f(x, y) =x3...Ch. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Discuss the advantages and disadvantages of the...Ch. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.5 - Prob. 1YTCh. 17.5 - Prob. 2YTCh. 17.5 - Prob. 3YTCh. 17.5 - Prob. 1WECh. 17.5 - Prob. 2WECh. 17.5 - Prob. 3WECh. 17.5 - Prob. 4WECh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Volume of a Coating An industrial coaling 0.1 in....Ch. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Life Span As we saw in Exercise 62 of Section...Ch. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.6 - Prob. 1YTCh. 17.6 - Evaluate 02[13(6x2y2+4xy+8x3+10y4+3)dy]dx and then...Ch. 17.6 - Prob. 3YTCh. 17.6 - Prob. 4YTCh. 17.6 - Prob. 5YTCh. 17.6 - Prob. 1WECh. 17.6 - Evaluate each definite integral. W2.23x+6dxCh. 17.6 - Prob. 3WECh. 17.6 - Prob. 4WECh. 17.6 - Prob. 5WECh. 17.6 - Prob. 6WECh. 17.6 - Prob. 1ECh. 17.6 - Prob. 2ECh. 17.6 - Prob. 3ECh. 17.6 - Prob. 4ECh. 17.6 - Prob. 5ECh. 17.6 - Prob. 6ECh. 17.6 - Prob. 7ECh. 17.6 - Prob. 8ECh. 17.6 - Prob. 9ECh. 17.6 - Prob. 10ECh. 17.6 - Prob. 11ECh. 17.6 - Prob. 12ECh. 17.6 - Prob. 13ECh. 17.6 - Prob. 14ECh. 17.6 - Prob. 15ECh. 17.6 - Prob. 16ECh. 17.6 - Prob. 17ECh. 17.6 - Prob. 18ECh. 17.6 - Prob. 19ECh. 17.6 - Prob. 20ECh. 17.6 - Prob. 21ECh. 17.6 - Prob. 22ECh. 17.6 - Prob. 23ECh. 17.6 - Prob. 24ECh. 17.6 - Prob. 25ECh. 17.6 - Prob. 26ECh. 17.6 - Prob. 27ECh. 17.6 - Prob. 28ECh. 17.6 - Prob. 29ECh. 17.6 - Prob. 30ECh. 17.6 - Prob. 31ECh. 17.6 - Prob. 32ECh. 17.6 - Prob. 33ECh. 17.6 - Prob. 34ECh. 17.6 - Prob. 35ECh. 17.6 - Prob. 36ECh. 17.6 - Prob. 37ECh. 17.6 - Prob. 38ECh. 17.6 - Prob. 39ECh. 17.6 - Prob. 40ECh. 17.6 - Prob. 41ECh. 17.6 - Prob. 42ECh. 17.6 - Prob. 43ECh. 17.6 - Use the region R with the indicated boundaries to...Ch. 17.6 - Prob. 45ECh. 17.6 - Prob. 46ECh. 17.6 - Prob. 47ECh. 17.6 - Prob. 48ECh. 17.6 - Prob. 49ECh. 17.6 - Prob. 50ECh. 17.6 - Prob. 51ECh. 17.6 - Prob. 52ECh. 17.6 - Prob. 53ECh. 17.6 - Prob. 54ECh. 17.6 - Prob. 55ECh. 17.6 - Prob. 56ECh. 17.6 - Prob. 57ECh. 17.6 - Prob. 58ECh. 17.6 - Prob. 59ECh. 17.6 - Prob. 60ECh. 17.6 - Prob. 61ECh. 17.6 - Prob. 62ECh. 17.6 - Prob. 63ECh. 17.6 - Prob. 64ECh. 17.6 - Prob. 65ECh. 17.6 - Prob. 66ECh. 17.6 - Prob. 67ECh. 17.6 - Prob. 68ECh. 17.6 - Prob. 69ECh. 17.6 - Time In Exercise 39 of Section 17.3, we saw that...Ch. 17.6 - Profit In Exercise 38 of Section 17.3, we saw that...Ch. 17 - Determine whether each of the following statements...Ch. 17 - Prob. 2RECh. 17 - Prob. 3RECh. 17 - Prob. 4RECh. 17 - Prob. 5RECh. 17 - Prob. 6RECh. 17 - Prob. 7RECh. 17 - Prob. 8RECh. 17 - Prob. 9RECh. 17 - Prob. 10RECh. 17 - Prob. 11RECh. 17 - Prob. 12RECh. 17 - Prob. 13RECh. 17 - Prob. 14RECh. 17 - Prob. 15RECh. 17 - Prob. 16RECh. 17 - Prob. 17RECh. 17 - Prob. 18RECh. 17 - Prob. 19RECh. 17 - Prob. 20RECh. 17 - Prob. 21RECh. 17 - Prob. 22RECh. 17 - Prob. 23RECh. 17 - Prob. 24RECh. 17 - Prob. 25RECh. 17 - Prob. 26RECh. 17 - Prob. 27RECh. 17 - Prob. 28RECh. 17 - Prob. 29RECh. 17 - Prob. 30RECh. 17 - Prob. 31RECh. 17 - Prob. 32RECh. 17 - Prob. 33RECh. 17 - Prob. 34RECh. 17 - Prob. 35RECh. 17 - Prob. 36RECh. 17 - Prob. 37RECh. 17 - Prob. 38RECh. 17 - Prob. 39RECh. 17 - Prob. 40RECh. 17 - Prob. 41RECh. 17 - Prob. 42RECh. 17 - Prob. 43RECh. 17 - Prob. 44RECh. 17 - Prob. 45RECh. 17 - Prob. 46RECh. 17 - Prob. 47RECh. 17 - Prob. 48RECh. 17 - Prob. 49RECh. 17 - Prob. 50RECh. 17 - Prob. 51RECh. 17 - Prob. 52RECh. 17 - Prob. 53RECh. 17 - Prob. 54RECh. 17 - Prob. 55RECh. 17 - Prob. 56RECh. 17 - Prob. 57RECh. 17 - Prob. 58RECh. 17 - Evaluate dz using the given information. 59.z =...Ch. 17 - Prob. 60RECh. 17 - Prob. 61RECh. 17 - Prob. 62RECh. 17 - Prob. 63RECh. 17 - Prob. 64RECh. 17 - Prob. 65RECh. 17 - Prob. 66RECh. 17 - Prob. 67RECh. 17 - Prob. 68RECh. 17 - Prob. 69RECh. 17 - Prob. 70RECh. 17 - Prob. 71RECh. 17 - Prob. 72RECh. 17 - Prob. 73RECh. 17 - Prob. 74RECh. 17 - Prob. 75RECh. 17 - Prob. 76RECh. 17 - Prob. 77RECh. 17 - Prob. 78RECh. 17 - Prob. 79RECh. 17 - Prob. 80RECh. 17 - Prob. 81RECh. 17 - Prob. 82RECh. 17 - Prob. 83RECh. 17 - Evaluate each double integral. If the function...Ch. 17 - Prob. 85RECh. 17 - Prob. 86RECh. 17 - Prob. 87RECh. 17 - Prob. 88RECh. 17 - Prob. 89RECh. 17 - Prob. 90RECh. 17 - Prob. 91RECh. 17 - Prob. 92RECh. 17 - Prob. 93RECh. 17 - Prob. 94RECh. 17 - Prob. 95RECh. 17 - Prob. 96RECh. 17 - Profit The total profit from 1 acre of a certain...Ch. 17 - Prob. 98RECh. 17 - Prob. 99RECh. 17 - Prob. 100RECh. 17 - Prob. 101RECh. 17 - Prob. 102RECh. 17 - Prob. 103RECh. 17 - Prob. 104RECh. 17 - Prob. 105RECh. 17 - Prob. 106RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- use Lagrange multipliers to solvearrow_forwardSuppose a Cobb-Douglas Production function is given by the following: P(L,K)=80L0.75 K-0.25 where L is units of labor, K is units of capital, and P(L, K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $400 and each unit of capital costs $1,600. Further suppose a total of $384,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased" to maximize production subject to your budgetary constraint? Units of labor, L = Units of capital, K = B) What is the maximum number of units of production under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production = unitsarrow_forwardSuppose a Cobb-Douglas Production function is given by the function: P(L, K) = 7L0.0 K0.4 Furthemore, the cost function for a facility is given by the function: C(L, K) = 100L +400K Suppose the monthly production goal of this facility is to produce 15,000 items. In this problem, we will assume L represents units of labor invested and K represents units of capital invested, and that you can invest in tenths of units for each of these. What allocation of labor and capital will minimize total production Costs? Units of Labor L = Units of Capital K = (Show your answer is exactly 1 decimal place) (Show your answer is exactly 1 decimal place) Also, what is the minimal cost to produce 15,000 units? (Use your rounded values for L and K from above to answer this question.) The minimal cost to produce 15,000 units is $ Hint: 1. Your constraint equation involves the Cobb Douglas Production function, not the Cost function. 2. When finding a relationship between L and K in your system of equations,…arrow_forward
- Find the absolute maximum and minimum of f(x, y) = x + y within the domain x² + y² ≤ 4. Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. 1. Absolute minimum of f(x, y) isarrow_forwardSuppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where I and y are the demand functions and 0 < x,y. Then as x = y = the factory can attain the maximum profit,arrow_forwardEvaluate the following integrals, showing all your workingarrow_forward
- Consider the function f(x) = 2x³-4x2-x+1. (a) Without doing a sketch, show that the cubic equation has at least one solution on the interval [0,1]. Use a theorem discussed in lectures, or see Section 1.8 of Calculus (7th ed) by Stewart. Ensure that the conditions of the theorem are satisfied (include this in your solution) (b) Now, by sketching the cubic (by hand or by computer), you should see that there is, in fact, exactly one zero in the interval [0,1]. Use Newton's method to find this zero accurate to 3 decimal places. You should include a sketch of the cubic, Newton's iteration formula, and the list of iterates. [Use a computer if possible, e.g., a spreadsheet or MatLab.]arrow_forwardEvaluate the following integrals, showing all your workingarrow_forwardDifferentiate the following functionarrow_forward
- Differentiate the following functionarrow_forwardA box with a square base and open top must have a volume of 13,500 cm³. Find the dimensions that minimise the amount of material used. Ensure you show your working to demonstrate that it is a minimum.arrow_forwardConsider the equation, f(x) = x*. (a) Using the trapezoidal method with 3 columns, estimate the value of the integral f² f(x)dx. (b) Using the trapezoidal method with 10 columns, estimate the value of the integral f² f(x)dx. You many need software to help you do this (e.g. MATLAB, Excel, Google sheets). (c) Use software to accurately calculate the integral (e.g. Wolfram alpha, Matlab). Using this answer, comment on the answers you found in parts a) and b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY