TOPICS IN PHYSICAL SCIENCE
12th Edition
ISBN: 9781260826524
Author: Tillery
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 6PEB
Mica is a sheet silicate while quartz is a network silicate. On the basis of its silicate structure, which mineral has a higher percentage composition of silicon? (Silicon to oxygen ratio is 2:5 for a sheet and 1:2 for a network.)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
please help with this question asap!!! in detail
please answer this asap!!!!
RT = 4.7E-30
18V
IT = 2.3E-3A+
12
38Ω
ли
56Ω
ли
r5
27Ω
ли
r3
28Ω
r4
> 75Ω
r6
600
0.343V
75.8A
Now figure out how much current in going through the r4
resistor.
|4 =
unit
And then use that current to find the voltage drop across the r
resistor.
V4
=
unit
Chapter 17 Solutions
TOPICS IN PHYSICAL SCIENCE
Ch. 17 - 1. A naturally occurring inorganic solid element...Ch. 17 - 2. A structural unit that is repeated in three...Ch. 17 - 3. Which element is the most abundant in Earth’s...Ch. 17 - 4. Minerals are classified as
a. silicates.
b....Ch. 17 - 5. The most abundant class of nonsilicates is...Ch. 17 - 6. Silicates are classified into two groups based...Ch. 17 - 7. The color of a mineral when it is finely...Ch. 17 - 8. The hardness of a mineral is rated using the
a....Ch. 17 - 9. The ratio of the mineral’s density to the...Ch. 17 -
10. Molten rock material from which minerals...
Ch. 17 -
11. An aggregation of one or more minerals that...Ch. 17 -
12. Rocks that are formed from molten minerals...Ch. 17 -
13. Igneous rock that slowly cooled deep below...Ch. 17 -
14. The rock that makes up the bulk of Earth’s...Ch. 17 -
15. The rock that makes up the ocean basins and...Ch. 17 -
16. Rocks that are formed from particles of other...Ch. 17 - 17. Accumulations of silt, sand, or other...Ch. 17 - 18. Limestone and dolomite are
a. sandstone.
b....Ch. 17 - 19. Heat and pressure change rocks into
a.igneous...Ch. 17 - 20. The relationship between rocks that are...Ch. 17 - 21. The thin layer that covers Earth’s surface is...Ch. 17 - 22. Based on its abundance in Earth's crust, most...Ch. 17 - 23. The most common rock in Earth's crust is
a....Ch. 17 - 24. An intrusive igneous rock will have which type...Ch. 17 - 25. Which igneous rock would have the greatest...Ch. 17 - 26. Which of the following formed from previously...Ch. 17 - 27. Sedimentary rocks are formed by the processes...Ch. 17 - 28. The greatest extent of metamorphic changes has...Ch. 17 - 29. Which type of rock probably existed first,...Ch. 17 - 30. Earth is unique because it has
a. CO2 in its...Ch. 17 - 31. The common structural feature of all silicates...Ch. 17 - 32. The one group that is not a subgroup of the...Ch. 17 - 33. The property that is not considered useful in...Ch. 17 - 34. The specific gravity of a mineral depends on...Ch. 17 - 35. Fluorite is a mineral that floats in liquid...Ch. 17 - 36. The group that is not a class of rocks is
a....Ch. 17 - 37. The classification of rocks is based on
a....Ch. 17 - 38. An example of a sedimentary rock is
a....Ch. 17 - 39. The term that does not describe a size of...Ch. 17 - 40. Dissolved rock materials form
a. chemical...Ch. 17 - 41. An example of a metamorphic rock is
a....Ch. 17 - 42. Extrusive igneous rocks are formed on Earth’s...Ch. 17 - 43. Foliation is found in
a. sedimentary rocks.
b....Ch. 17 - Prob. 1QFTCh. 17 - Prob. 2QFTCh. 17 - 3. Explain why each mineral has its own unique set...Ch. 17 - 4. Identify at least eight physical properties...Ch. 17 - 5. Explain how the identity of an unknown mineral...Ch. 17 - 6. What is a rock?
Ch. 17 - 7. Describe the concept of the rock cycle.
Ch. 17 - Prob. 8QFTCh. 17 - 9. Which major kind of rock, based on the way it...Ch. 17 -
10. What is the difference between magma and...Ch. 17 -
11. What is meant by the “texture" of an igneous...Ch. 17 -
12. What are the basic differences between...Ch. 17 -
13. Explain why a cooled and crystallized magma...Ch. 17 - Prob. 14QFTCh. 17 -
15. What are clastic sediments? How are they...Ch. 17 -
16. Briefly describe the rock-forming process...Ch. 17 - 17. What are metamorphic rocks? What limits the...Ch. 17 - 18. Describe what happens to the minerals as shale...Ch. 17 - Prob. 19QFTCh. 17 - 1. What are the significant similarities and...Ch. 17 - 2. Is ice a mineral? Describe reasons to support...Ch. 17 - 3. If ice is a mineral, is a glacier a rock?...Ch. 17 - Prob. 4FFACh. 17 - Prob. 1PEACh. 17 - Prob. 2PEACh. 17 - Prob. 3PEACh. 17 - Prob. 4PEACh. 17 - Prob. 5PEACh. 17 - Prob. 6PEACh. 17 - Prob. 7PEACh. 17 - Prob. 8PEACh. 17 - Prob. 9PEACh. 17 - Prob. 10PEACh. 17 - Prob. 11PEACh. 17 - Prob. 12PEACh. 17 - A granite countertop measuring 4.57 m long by 0.75...Ch. 17 - A limestone building stone measuring 40.0 cm long...Ch. 17 - Granite boulders with a minimum mass of 1.50...Ch. 17 - 1. A sample of the mineral sylvite measures 2.68...Ch. 17 - 2. A rectangular crystal of calcium plagioclase...Ch. 17 - 3. A spherical specimen of the mineral quartz...Ch. 17 - 4. Geologists separate nonferromagnesian silicates...Ch. 17 - 5. Compare the mineral halite (NaCl, hardness of...Ch. 17 - 6. Mica is a sheet silicate while quartz is a...Ch. 17 - 7. Magnesite is a magnesium ore mineral and has...Ch. 17 - 8. Magnetite and hematite are iron ore minerals....Ch. 17 - 9. An iron mine has an ore deposit estimated at...Ch. 17 - 10. An ore deposit consisting of chert and...Ch. 17 -
11. For a given igneous rock type, the proportion...Ch. 17 -
12. Based on Figure 17.13, what is the average...Ch. 17 -
13. A gabbro countertop measuring 4.70 m long by...Ch. 17 -
14. A sandstone building stone measuring 50.0 cm...Ch. 17 - Prob. 15PEB
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
On what molecule does the anticodon appear? Explain the role of this molecule in protein synthesis.
Human Physiology: An Integrated Approach (8th Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
1. Suppose a chloride ion and a sodium ion are separated by a center—center distance of 5 Å. Is
the interactio...
Biochemistry: Concepts and Connections (2nd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forward
- A small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forward
- The 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forwardIf a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forward
- A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY