Starting Out With C++: Early Objects (10th Edition)
Starting Out With C++: Early Objects (10th Edition)
10th Edition
ISBN: 9780135235003
Author: Tony Gaddis, Judy Walters, Godfrey Muganda
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 6PC
Program Plan Intro

List Reverse

Program Plan:

  • Include the required specifications into the program.
  • Declare a class ListNode.
    • Declare the member variables “value” and “*p” in structure named “ListNode”.
    • The data value of node is stored in variable v and address to next pointer is stored in pointer p
    • Declare the constructor, destructor, and member functions in the class.
    • Declare the structure variable “next” and a friend class Linked List
  • Declare a class LinkList.
    • Function to insert elements into the linked list “void add(double n)”is defined.
    • Function to check whether a particular node with a data value n is a part of linked list or not “bool isMember(double n)”.
    • A recursive print method is defined to print all the data values present in the link list “void rPrint()”.
    • A destructor is called to delete the desired data value entered by the user called   “LinkedList::~LinkedList( )”.
    • A method to remove the element passed as a parameter from the link list is called “void LinkedList::remove(double x)”.
    • Declare a method “void reverse( )”  to reverse the elements present in the link list by traversing through the list and Move node at end to the beginning of the new reverse list being constructed.
    • Declaration of structure variable head to store the first node of the list “ListNode * head” is defined.
    • A function “void LinkedList::add(double n)” is defined which adds or inserts new nodes into the link list.
    • A function “bool LinkedList::isMember(double n)” is defined which  searches for a given data value within the nodes present in the link list.
    • A destructor “LinkedList::~LinkedList()” deallocates the memory for the link list.
    • A function “void LinkedList::print()” is used to print all the node data values present in the link list by traversing through each nodes in the link list.
    • A recursive member function check is defined called “bool LinkedList::rIsMember(ListNode *pList,double x)” .
      • If the data value entered is present within the link list, it returns true, else it returns false.
  • Declare the main class.
    • Create an empty list to enter the data values into the list.
    • Copy is done using copy constructor.
    • Input “5” numbers from user and insert the data values into the link list calling “void LinkedList::add(double n)” function.
    • Print the data values of the nodes present in the link list.
    • Call the reverse function “list1.reverse()” to reverse all the elements in the link list and then call the print function to print the reversed elements.

Blurred answer
Students have asked these similar questions
I need help to solve a simple problem using Grover’s algorithm, where the solution is not necessarily known beforehand. The problem is a 2×2 binary sudoku with two rules: • No column may contain the same value twice. • No row may contain the same value twice.   Each square in the sudoku is assigned to a variable as follows:   We want to design a quantum circuit that outputs a valid solution to this sudoku. While using Grover’s algorithm for this task is not necessarily practical, the goal is to demonstrate how classical decision problems can be converted into oracles for Grover’s algorithm.   Turning the Problem into a Circuit   To solve this, an oracle needs to be created that helps identify valid solutions. The first step is to construct a classical function within a quantum circuit that checks whether a given state satisfies the sudoku rules.   Since we need to check both columns and rows, there are four conditions to verify: v0 ≠ v1   # Check top row   v2 ≠ v3   # Check bottom row…
using r language
I need help to solve a simple problem using Grover’s algorithm, where the solution is not necessarily known beforehand. The problem is a 2×2 binary sudoku with two rules: • No column may contain the same value twice. • No row may contain the same value twice.   Each square in the sudoku is assigned to a variable as follows:   We want to design a quantum circuit that outputs a valid solution to this sudoku. While using Grover’s algorithm for this task is not necessarily practical, the goal is to demonstrate how classical decision problems can be converted into oracles for Grover’s algorithm.   Turning the Problem into a Circuit   To solve this, an oracle needs to be created that helps identify valid solutions. The first step is to construct a classical function within a quantum circuit that checks whether a given state satisfies the sudoku rules.   Since we need to check both columns and rows, there are four conditions to verify: v0 ≠ v1   # Check top row   v2 ≠ v3   # Check bottom row…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning