Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 66EAP
Engineers are testing a new thin-film coating whose index of refraction is less than that of glass. They deposit a 560-nm-thick layer on glass, then shine lasers on it. A red laser with a wavelength of 640 nm has no reflection at all, but a violet laser with a wavelength of 400 nm has a maximum reflection. How the coating behaves at other wavelengths is unknown. What is the coating’s index of refraction?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Astronauts placed a mirror on the surface of the Moon to be used for optical measurements of the precise distance to the moon. Visible light is sent from
the Earth and is reflected back from the moon. If the mirror has a diameter of 30 cm, roughly how large is the beam of reflected light that reaches Earth?
The distance from the Earth to the Moon is 3.8×108
meters. You can assume the light from Earth is a plane wave when it strikes the mirror.
A light wave has a 604 nm wavelength in the air. Its wavelength in a transparent solid is 416 nm. What is the speed of light (in m/s) in this solid?
The plot below shows the index of refraction for fused quartz as a function of wavelength (where
the wavelength is the wavelength in vacuum).
1.48
Index of refraction
1.47
1.46
a
1.45
300
400
500 600
Wavelength (nm)
700
800
Assuming the index of refraction is approximately given by the equation
a
n = 1+
wo - w²
Nq²
2€0m
what is the resonant frequency (w0) of the fused quartz? (Brute force Hint: you could read off
two points from the curve, solve for w0 and then check your answer with a third point on the
curve). Don't forget that that w=2nf, and f^x=c, and l= wavelength.
Its okay when you pick the third point on the curve you don't get the same w0.
Chapter 17 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 17 - Prob. 1CQCh. 17 - If you take snapshots of a standing wave on a...Ch. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - 10. A trumpet player hears 5 beats per second when...
Ch. 17 - Prob. 1EAPCh. 17 - FIGURE EX17.2 is a snapshot graph at i = 0 s of...Ch. 17 - Prob. 3EAPCh. 17 - Prob. 4EAPCh. 17 - Prob. 5EAPCh. 17 - Prob. 6EAPCh. 17 - FIGURE EX17.7 shows a standing wave on a string...Ch. 17 - Prob. 8EAPCh. 17 - Prob. 9EAPCh. 17 - 10. The two highest-pitch strings on a violin are...Ch. 17 - A heavy piece of hanging sculpture is suspended by...Ch. 17 - Prob. 12EAPCh. 17 - Prob. 13EAPCh. 17 - What are the three longest wavelengths for...Ch. 17 - Prob. 15EAPCh. 17 - Prob. 16EAPCh. 17 - We can make a simple model of the human vocal...Ch. 17 - The lowest note on a grand piano has a frequency...Ch. 17 - A bass clarinet can be modeled as a 120cmlong...Ch. 17 - Prob. 20EAPCh. 17 - Prob. 21EAPCh. 17 - Prob. 22EAPCh. 17 - Two loudspeakers in a 20C room emit 686Hz sound...Ch. 17 - Prob. 24EAPCh. 17 - What is the thinnest film of MgF2(n1.39) on glass...Ch. 17 - Prob. 26EAPCh. 17 - I FIGURE EX17.27 shows the circular wave fronts...Ch. 17 - Prob. 28EAPCh. 17 - 29. Two in-phase loudspeakers, which emit sound...Ch. 17 - Two in-phase speakers 2.0m apart in a plane are...Ch. 17 - Prob. 31EAPCh. 17 - Prob. 32EAPCh. 17 - A flute player hears four beats per second when...Ch. 17 - Traditional Indonesian music uses an ensemble...Ch. 17 - Two microwave signals of nearly equal wavelengths...Ch. 17 - A 2.0mlong string vibrates at its second-harmonic...Ch. 17 - Prob. 37EAPCh. 17 - Prob. 38EAPCh. 17 - Biologists think that some spiders “tune” strands...Ch. 17 - Prob. 40EAPCh. 17 - Prob. 41EAPCh. 17 - Prob. 42EAPCh. 17 - Prob. 43EAPCh. 17 - A 75g bungee cord has an equilibrium length of...Ch. 17 - Prob. 45EAPCh. 17 - Prob. 46EAPCh. 17 - Prob. 47EAPCh. 17 - Prob. 48EAPCh. 17 - Prob. 49EAPCh. 17 - Prob. 50EAPCh. 17 - Prob. 51EAPCh. 17 - Prob. 52EAPCh. 17 - Prob. 53EAPCh. 17 - Prob. 54EAPCh. 17 - Prob. 55EAPCh. 17 - A 44-cm-diameter water tank is filled with 35 cm...Ch. 17 - Prob. 57EAPCh. 17 - Prob. 58EAPCh. 17 - Two in-phase loudspeakers emit identical 1000 Hz...Ch. 17 - Prob. 60EAPCh. 17 - Two loudspeakers emit sound waves of the same...Ch. 17 - Prob. 62EAPCh. 17 - Prob. 63EAPCh. 17 - Prob. 64EAPCh. 17 - Prob. 65EAPCh. 17 - Engineers are testing a new thin-film coating...Ch. 17 - Prob. 67EAPCh. 17 - Prob. 68EAPCh. 17 - Two loudspeakers in a plane, 5.0 m apart, are...Ch. 17 - Two identical loudspeakers separated by distance...Ch. 17 - Prob. 71EAPCh. 17 - Piano tuners tune pianos by listening to the beats...Ch. 17 - Prob. 73EAPCh. 17 - Prob. 74EAPCh. 17 - Prob. 75EAPCh. 17 - Two radio antennas are separated by 2.0 m. Both...Ch. 17 - Prob. 77EAPCh. 17 - Prob. 78EAPCh. 17 - Prob. 79EAPCh. 17 - Ultrasound has many medical applications, one of...Ch. 17 - Prob. 81EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Jimin applies a coating on a piece of glass to reduce its reflectivity when light with a frequency of 5.75 x 10¹4 Hz shines on it. If the material has an index of refraction of 1.375 and the glass has an index of refraction of 1.537, what is the minimum thickness the coating should have? (c = 3.00 x 108 m/s) 60.0 nm 145 nm 94.9 nm 65.2 nmarrow_forwardLight has wavelength 600 nm in a vacuum. It passes into glass, which has an index of refraction of 1.50. What is the frequency of the light inside the glass? 3.3X10^14 Hz 5.0X10^14 Hz 3.3X10^5 Hz 5.0X10^5 Hzarrow_forwardA light of wavelength 589 nm passes from air to a diamond. The thickness of diamond is 4.2 x 10⁹ m. How long it will take the light to pass perpendicularly to the glass crown plate? What is the wavelength of light in the glass crown plate?arrow_forward
- A new type of transparent plastic has been developed. When light travels through it, it only travels at 2x10^7 m/s. What is the refractive index (n) of this plastic?arrow_forwardA possible means for making an airplane invisible to radar is to coat the plane with an anti-reflective polymer. If radar waves have a wavelength of 3.30 cm and the index of refraction of the polymer is n = 1.20, how thick would you make the coating? State your answer in cm to the nearest 0.001cm.arrow_forwardA ray of light moves from air (n=1.00) into a piece of plastic. In the air the light has a wavelength equal to 640nm. In the plastic the light has a wavelength 550nm. What is the index of refraction inside the glass? HINT: What wave property stays constant when a wave propagates from one medium to another?arrow_forward
- An engineer, investigating the behavior of radio waves, builds a box 7.20 m long. Inside the box at one end is a small radio transmitter that emits radiation with a wavelength of 0.120 m. A receiver is placed at the other end, 7.20 m away. Assume both the transmitter and the receiver are on the floor of the box. The walls and floor of the box interior are treated to minimize reflection of radio waves. The ceiling of the box interior, however, is metal, so the radio waves can reflect off of it almost perfectly. The radio waves can take two paths from the transmitter to the receiver: a straight-line path, and a path that reflects off the ceiling of the box interior. Note that there is a phase shift when the waves reflect off the ceiling. (a) What is the minimum (nonzero) height of the box ceiling (in m) that could produce destructive interference between the direct and reflected waves at the receiver's location? (b) What If? Some modern Wi-Fi antennas emit frequencies in the 5 GHz band.…arrow_forwardTwo soap bubble are floating in air. Each bubble has the shape of a spherical shell and a refractive index of 1.35. Bubble A has a wall thickness of 100 nm. The wavelength of visible light that is most strongly reflected from bubble A is 540 nm. The wavelength of visible light that is most strongly reflected from bubble B is also 540 nm. Calculate three possible values for the wall thickness of bubble B.arrow_forwardNo glass is perfectly transparent. Mainly because of reflections, about 92% of light passes through an average sheet of clear windowpane. The 8% loss is not noticed through a single sheet, but through several sheets, the loss is apparent. How much light is transmitted by a double-paned window (one with two sheets of glass)?arrow_forward
- A material has a refractive index of 1.7. What is the speed of light in this material?arrow_forwardAn optical coating with an index of refraction of 1.23 is applied to glass with an index of refraction of 1.50. If the thickness of this coating is 184nm, what wavelength(s) of visible light in air are most strongly reflected from this surface? Visible wavelengths range from 350nm to 700nm.arrow_forward9. A coating is being applied to reduce the reflectivity of a pane of glass to light with a frequency of 6.75 x 1014 Hz that is incident normally on the pane. If the material has an index of refraction of 1.675 and the glass has an index of refraction of 1.537, what is the minimum thickness the coating should have? (c = 3.00 × 108 m/s)? Hint: one phase shifts occur and c=2 f. Air n =1.675 n =1.537 PS, NPS RPS-Yes. t DI > 2nt = (mt) + ± 2 (1.625)= t= 0.133μm = 133.67m (m=0)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY