Concept explainers
The solubility product of
Interpretation:
The molar solubility of
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperature is termed as solubility of the solute in the solvent at that temperature.
The solubility product of the sparingly soluble salt is given as the product of the concentration of the ions raised to the power equal to the number of times the ion occurs in the equation, after dissociation of the electrolyte.
Number of moles of solute dissolved per litre of solution is called molar solubility.
At a given temperature, the product of molar concentrations of the ions of a salt present in the solution is known as the solubility product of the salt. It is represented by
Higher is the value of solubility product of a salt, higher is its solubility.
The presence of common ions in the solution decreases the solubility of a given compound.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
The molar solubility of a compound is directly proportional to the number of molecules present in the given amount of solvent.
Answer to Problem 63QP
Solution:
The molar solubility of
The molar solubility of
The molar solubility of
Explanation of Solution
a) Pure water
Thesolubility product constant of
The equation of the dissociation of
Consider s to be the molar solubility.
The molar solubility of
Summarize the concentration at the equilibrium as follows:
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the value of
Hence, the molar solubility of
b)
The solubility product constant of
The molar solubility of
The equation of the dissociation of
Summarize the concentration at the equilibrium as follows:
Therefore, the concentration of
Summarize the concentration at the equilibrium as follows:
Consider s to be the molar solubility.
The equilibrium expression for a reaction is written as:
Here,
Substitute the value of
The value of s is very small as compared to 0.20. It can be neglected.
Hence, the molar solubility of
c)
The solubility product constant of
The molar solubility of
The equation of the dissociation of
Summarize the concentration at the equilibrium as follows:
The concentration of
Summarize the concentration at the equilibrium as follows:
Consider s to be the molar solubility.
The equilibrium expression for a reaction is written as:
Here,
Substitute the value of
The value of s is very small as compared to 0.20. It can be neglected.
Hence, the molar solubility of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning