Concept explainers
Interpretation:
The compoundsthatprecipitate out firstand last areto be identified with given concentration of ions.
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperature is termed as the solubility of the solute in the solvent at that temperature.
The solubility product of a sparingly soluble salt is given as the product of the concentration of the ions raised to the power equal to the respective stoichiometric coefficients after the dissociation of the electrolyte.
Number of moles of solute dissolved per litre of solution is called molar solubility.
The unit of molar solubility is
Molar solubility can be evaluated from the solubility product constant
When equilibrium is reached between a solid and its constituent ions in a solution, it is known as the solubility product constant
At a given temperature, the product of molar concentrations of the ions of salt present in the solution is known as the solubility product of the salt. It is represented by
Higher is the value of solubility product of a salt, more is its solubility.
The presence of common ions in the solution decreases the solubility of a given compound.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
The solubility product
The more the molar concentration of the ions, the more time it’ll take to precipitate. The less the molar concentration of the ions, the lesser time it’ll take to precipitate.
Answer to Problem 118AP
Solution: No, comparison of two salts with similar formulas that have the same number of cations and anions is possible.
Explanation of Solution
Given information: The concentration of
The compound
The equation for the dissociation of
Consider
The concentration of
The ICE table for theionization of
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
On solving further,
The concentration of
Hence, the concentration of
The equation for the dissociation of
The concentration of
The ICE tablefor the ionisation of
Consider
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
The concentration of
Hence, the concentration of
The equation for the dissociation of
The concentration of
The ICE table for the ionisation of
Consider
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
The concentration of
Hence, the concentration of
The order of precipitation depends upon the molar concentration of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- Speaking of composite materials, indicate the correct option:(A). Composite materials can only be: metal-polymer or polymer-polymer.(B). Composite materials can be made up of particles, but not fibers or sheets.(C). When the reinforcing particles are uniformly distributed in a composite material, there may be a greater tendency for it to have isotropic properties.(D). None of the above is correct.arrow_forwardIf we are talking about viscoelastic modulus or viscoelastic relaxation modulus in polymers, indicate the correct option.(A). It reports the variation of elastic behavior as a function of time.(B). It is only useful for defining its glass transition temperature.(C). It only allows us to define the polymer degradation temperature.(D). Neither option is correct.arrow_forwardWhen natural light falls perpendicularly on a material A, it has a reflectivity of 0.813%. Indicate the value of the refractive index.arrow_forward
- In piezoelectricity and piezoelectric ceramics, one of the following options is false:(A). Piezoelectricity allows an electrical signal to be transformed into a mechanical one.(B). PbZrO3 is a well-known piezoelectric ceramic.(C). Piezoelectricity and ferroelectricity in general have no relationship.(D). One of the applications of piezoelectricity is sonar.arrow_forward(30 MARKS) Give the major product(s ) formed including relevant stereochemistry or the complete reaction conditions for the following reactions. More than one step may be required for each reaction arrow, in which case the steps must be numbered 1), 2) etc. (2 marks each box) h) i) h) OH i) HO H3PO4, heat 2 Brarrow_forwardNonearrow_forward
- Indicate which option is false(A). Resistivity has a residual component and a thermal component.(B). In some materials resistivity increases with T and in others it decreases.(C). In insulating materials, resistivity is very low.arrow_forwardIn ceramic materials, in relation to polymorphism, the same substance crystallizes differently when external conditions vary. Is this correct?arrow_forwardIndicate the type of bond that is considered to be a hydrogen bond.(A). Permanent dipole-dipole interaction between polar molecules.(B). Mixed ionic-covalent bond.(C). Principal interatomic bond(D). Van del Waals forces.arrow_forward
- Retro aldol: NaOH H₂O H NaOH & d H₂O Harrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. H conc. HBr Drawing Qarrow_forwardCalculate the atomic packing factor of diamond knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are, respectively, 0.038 and 0.117 nm.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning