Concept explainers
Interpretation:
The compoundsthatprecipitate out firstand last areto be identified with given concentration of ions.
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperature is termed as the solubility of the solute in the solvent at that temperature.
The solubility product of a sparingly soluble salt is given as the product of the concentration of the ions raised to the power equal to the respective stoichiometric coefficients after the dissociation of the electrolyte.
Number of moles of solute dissolved per litre of solution is called molar solubility.
The unit of molar solubility is
Molar solubility can be evaluated from the solubility product constant
When equilibrium is reached between a solid and its constituent ions in a solution, it is known as the solubility product constant
At a given temperature, the product of molar concentrations of the ions of salt present in the solution is known as the solubility product of the salt. It is represented by
Higher is the value of solubility product of a salt, more is its solubility.
The presence of common ions in the solution decreases the solubility of a given compound.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
The solubility product
The more the molar concentration of the ions, the more time it’ll take to precipitate. The less the molar concentration of the ions, the lesser time it’ll take to precipitate.
Answer to Problem 118AP
Solution: No, comparison of two salts with similar formulas that have the same number of cations and anions is possible.
Explanation of Solution
Given information: The concentration of
The compound
The equation for the dissociation of
Consider
The concentration of
The ICE table for theionization of
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
On solving further,
The concentration of
Hence, the concentration of
The equation for the dissociation of
The concentration of
The ICE tablefor the ionisation of
Consider
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
The concentration of
Hence, the concentration of
The equation for the dissociation of
The concentration of
The ICE table for the ionisation of
Consider
The equilibrium expression for a reaction is written as follows:
Here,
Substitute the values of
The value of
The concentration of
Hence, the concentration of
The order of precipitation depends upon the molar concentration of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- A solution is made up by adding 0.839 g of silver(I) nitrate and 1.024 g of lead(II) nitrate to enough water to make 492 mL of solution. Solid sodium chromate, Na2CrO4, is added without changing the volume of the solution. (a) Which salt will precipitate first, Ag2CrO4 or PbCrO4? (b) What is the concentration of the chromate ion when the first salt starts to precipitate?arrow_forwardConsider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forwardYou are given a saturated solution of lead(II) chloride. Which one of the following solutions would be most effective in yielding a precipitate when added to the lead(II) chloride solution? a 0.1 M NaCl(aq) b saturated PbS(aq) c 0.1 M NaSO4(aq)arrow_forward
- Consider the nanoscale-level representations for Question 110 of the titration of the aqueous weak acid HX with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: After a very small volume of titrant has been added to the initial HX solution? When enough titrant has been added to take the solution just past the equivalence point? Halfway to the equivalence point? At the equivalence point? Nanoscale representations for Question 110.arrow_forwardA solution is 0.047 M in both NaF and Na2CO3. Solid strontium nitrate, Sr(NO3)2, is added without changing the volume of the solution. (a) Which salt, SrCO3 or SrF2(Ksp=4.3109), will precipitate first? (b) What is [Sr2+] when the salt in (a) first begins to precipitate?arrow_forwardWhat must be the concentration of chromate ion in order to precipitate strontium chromate, SrCrO4, from a solution that is 0.0034 M Sr2+?arrow_forward
- A solution is made up by adding 0.632 g of barium nitrate and 0.920 g of lanthanum nitrate, to La(NO3)3 enough water to make 0.500 L of solution. Solid sodium iodate, NalO3, is added (without volume change) to the solution. (a) Which salt will precipitate first? La(IO3)3 (Ksp=7.501012) or BAIO3 (Ksp=4.0109)? (b) What is [IO3-] when the salt in (a) first begins to precipitate?arrow_forwardLead(II) chromate, PbCrO4, was used as a yellow paint pigment (chrome yellow). When a solution is prepared that is 5.0 104 M in lead ion, Pb2, and 5.0 105 M in chromate ion, CrO42, would you expect some of the lead(II) chromate to precipitate?arrow_forwardA volume of 50 mL of 1.8 M NH3 is mixed with an equal volume of a solution containing 0.95 g of MgCl2. What mass of NH4Cl must be added to the resulting solution to prevent the precipitation of Mg(OH)2?arrow_forward
- Solid sodium fluoride is slowly added to an aqueous solution that contains 0.0100-M Pb2+ and 0.0100-M Ca2+. (a) Determine which precipitates first, calcium fluoride or lead(II) fluoride. (b) Calculate the percentage of Ca2+ or Pb2+ that has precipitated just prior to the precipitation of the compound that precipitates second.arrow_forwardA student dissolved a compound in water and added hydrochloric acid. No precipitate formed. Next she bubbled H2S into this solution, but again no precipitate formed. However, when she made the solution basic with ammonia and bubbled in H2S, a precipitate formed. Which of the following are possible as the cation in the compound? a Ag+ b Ca2+ c Mn2+ d Cd2arrow_forwardThe weak base ethanolamine. HOCH2CH2NH2, can be titrated with HCl. HOCH2CH2NH2(aq)+H3O+(aq)HOCH2CH2NH3+(aq)+H2O(l) Assume you have 25.0 mL of a 0.010 M solution of ethanolamine and titrate it with 0.0095 M HCl. (Kb for ethanolamine is 3.2 107.) (a) What is the pH of the ethanolamine solution before the titration begins? (b) What is the pH at the equivalence point? (c) What is the pH at the halfway point of the titration? (d) Which indicator in Figure 17.11 would be the best choice to detect the equivalence point? (e) Calculate the pH of the solution after adding 5.00, 10.0, 20.0, and 30.0 mL of the acid. (f) Combine the information in parts (a), (b), (c), and (e), and plot an approximate titration curve.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning