Engineering Circuit Analysis
Engineering Circuit Analysis
9th Edition
ISBN: 9780073545516
Author: Hayt, William H. (william Hart), Jr, Kemmerly, Jack E. (jack Ellsworth), Durbin, Steven M.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 61E

(a)

To determine

The value of output voltage, v0(t).

(a)

Expert Solution
Check Mark

Answer to Problem 61E

The value of output voltage, v0(t)=5.444e0.625t(cos(1.45t+23.32ο))V.

Explanation of Solution

Given data:

The input voltage is, vi(t)=5u(t)V

The given diagram is shown in Figure 1.

Engineering Circuit Analysis, Chapter 17, Problem 61E , additional homework tip  1

Calculation:

Mark the loop current i in the given figure.

The required diagram is shown in Figure 2.

Engineering Circuit Analysis, Chapter 17, Problem 61E , additional homework tip  2

The conversion of mH into H is given as,

1mH=1×103H

The conversion of 800mH into H is given as,

800mH=800×103H=0.8H

Hence, the value of the inductor, L=0.8H

The conversion of mF into F is given as,

1mF=1×103F

The conversion of 500mH into F is given as,

500mF=500×103F=0.5F

Hence, the value of the capacitor, C=0.5F

The expression for output voltage using KVL is given by,

i(t)+0.8di(t)dt+10.5i(t)dt=vi(t)

Substitute 5u(t) for vi(t) in the above expression.

i(t)+0.8di(t)dt+10.5i(t)dt=5u(t)

Apply Fourier transform to the above expression.

I(jω)+0.8jωI(jω)+2jωI(jω)=F[5u(t)]I(jω)[jω+0.8(jω)2+2jω]=F[5u(t)]        (1)

The Fourier transform of 5u(t) is given by,

F[5u(t)]=5(πδ(ω)+1jω)

Substitute 5(πδ(ω)+1jω) for F[5u(t)] in equation (1).

I(jω)[jω+0.8(jω)2+2jω]=5(πδ(ω)+1jω)I(jω)[jω+0.8(jω)2+2]=5[(jω)πδ(ω)+1]I(jω)0.8[(jω)2+1.25jω+2.5]=5[(jω)πδ(ω)+1]I(jω)=6.25[(jω)πδ(ω)(jω)2+1.25jω+2.5+1(jω)2+1.25jω+2.5]

Further solve as,

I(jω)=6.25[πδ(ω)[(jω+0.625j1.45)0.625+j1.45](jω+0.625j1.45)(jω+0.625+j1.45)+1(jω+0.625+j1.45)(jω+0.625j1.45)]=6.25[πδ(ω)(jω+0.625+j1.45)(πδ(ω)(0.625j1.45)(jω+0.625j1.45)(jω+0.625+j1.45))+1(jω+0.625+j1.45)(jω+0.625j1.45)]=6.25[πδ(ω)(jω+0.625+j1.45)+(πδ(ω)(0.5+j0.215)(jω+0.625j1.45))πδ(ω)(0.5+j0.215)jω+0.625+j1.45+6.25j2.91(jω+0.625+j1.45)1jω+0.625j1.45]=3.125[2πδ(ω)(jω+0.625+j1.45)+(2πδ(ω)(0.5+j0.215)(jω+0.625j1.45))2πδ(ω)(0.5+j0.215)jω+0.625+j1.45+2.155j1(jω+0.625+j1.45)1jω+0.625j1.45]

Apply shifting property for ω0 in δ(ω) terms.

Further solve as,

I(jω)=[3.125(2πδ(ω))[((0.5j0.215)(0.625+j1.45))+(0.5+j0.215)0.625j1.45]+2.155j1(jω+0.625+j1.45)1jω+0.625j1.45]=[3.125(2πδ(ω))[(0.2j0.0865)+(0.2j0.0865)]+2.155j1(jω+0.625+j1.45)1jω+0.625j1.45]=[3.125(2πδ(ω))[0.4]+2.155j1(jω+0.625+j1.45)1jω+0.625j1.45]=1.25(2πδ(ω))+2.155j1(jω+0.625+j1.45)1jω+0.625j1.45        (2)

The inverse Fourier transform for the 2πδ(ω) is given by,

F1[2πδ(ω)]=1

The inverse Fourier transform for the 1jω+0.625+j1.45 is given by,

F1[ 1jω+0.625+j1.45 ]=e(0.625+j1.45)tu(t)

The inverse Fourier transform for the 1jω+0.625j1.45 is given by,

F1[1jω+0.625j1.45]=e(0.625j1.45)tu(t)

Substitute 1 for 2πδ(ω), e(0.625+j1.45)tu(t) for 1jω+0.625+j1.45 and e(0.625j1.45)tu(t) for 1jω+0.625j1.45 in equation (2).

i(t)=1.25+j2.155[e(0.625+j1.45)te(0.625j1.45)t]u(t)

The expression for the output voltage from the figure is given by,

v0(t)=0.8di(t)dt

Substitute 1.25+j2.155[e(0.625+j1.45)te(0.625j1.45)t]u(t) for i(t) in the above expression.

v0(t)=0.8ddt[1.25+j2.155[e(0.625+j1.45)te(0.625j1.45)t]u(t)]=0.8(j2.155)[(0.625+j1.45)e(0.625+j1.45)t+(0.625j1.45)e(0.625j1.45)t]=2.5j1.0775e(0.625+j1.45)t+2.5+j1.0775e(0.625j1.45)t=e0.625t(2.72223.32ο)ej1.45t+e0.625t(2.72223.32ο)ej1.45t

Further solve as,

v0(t)=2(2.2722)e0.625t(cos(1.45t+23.32ο))=5.444e0.625t(cos(1.45t+23.32ο))

Conclusion:

Therefore, the value of output voltage, v0(t)=5.444e0.625t(cos(1.45t+23.32ο))V.

(b)

To determine

The value of output voltage, v0(t).

(b)

Expert Solution
Check Mark

Answer to Problem 61E

The value of output voltage, v0(t)=5.134e0.625t(cos(1.45t+136.1ο))V.

Explanation of Solution

Given data:

The input voltage is, vi(t)=3δ(t)V

Calculation:

The expression for output voltage using KVL is given by,

i(t)+0.8di(t)dt+10.5i(t)dt=vi(t)

Substitute 3δ(t) for vi(t) in the above expression.

i(t)+0.8di(t)dt+10.5i(t)dt=3δ(t)

Apply Fourier transform to the above expression.

I(jω)+0.8jωI(jω)+2jωI(jω)=F[3δ(t)]I(jω)[jω+0.8(jω)2+2jω]=F[3δ(t)]        (3)

The Fourier transform of 3δ(t) is given by,

F[3δ(t)]=3

Substitute 3 for F[3δ(t)] in equation (3).

I(jω)[jω+0.8(jω)2+2jω]=3I(jω)[jω+0.8(jω)2+2]=3jωI(jω)0.8[(jω)2+1.25jω+2.5]=3jωI(jω)=3.75[jω(jω)2+1.25jω+2.5]

Further solve as,

I(jω)=3.75[jω(jω+0.625+j1.45)(jω+0.625j1.45)]=3.75[0.5+j0.215(jω+0.625j1.45)+0.5j0.215jω+0.625+j1.45]=1.875+j0.7875(jω+0.625j1.45)+1.875j0.7875jω+0.625+j1.45        (4)

The inverse Fourier transform for the 1jω+0.625+j1.45 is given by,

F1[1jω+0.625+j1.45]=e(0.625+j1.45)tu(t)

The inverse Fourier transform for the 1jω+0.625j1.45 is given by,

F1[1jω+0.625j1.45]=e(0.625j1.45)tu(t)

Substitute e(0.625+j1.45)tu(t) for 1jω+0.625+j1.45 and e(0.625j1.45)tu(t) for 1jω+0.625j1.45 in equation (4).

i(t)=[(1.875+j0.7875)e(0.625j1.45)t+(1.875j0.7875)e(0.625+j1.45)t]u(t)

The expression for the output voltage from the figure is given by,

v0(t)=0.8di(t)dt

Substitute [(1.875+j0.7875)e(0.625j1.45)t+(1.875j0.7875)e(0.625+j1.45)t]u(t) for i(t) in the above expression.

v0(t)=0.8ddt[(1.875+j0.7875)e(0.625j1.45)t+(1.875j0.7875)e(0.625j1.45)t]u(t)=[(1.5+j0.63)(0.625j1.45)e(0.625j1.45)t(1.5j0.63)(0.625+j1.45)e(0.625+j1.45)t]=(1.85j1.78)e(0.625j1.45)t(1.85+j1.78)e(0.625+j1.45)t=e0.625t(2.567136.1ο)ej1.45t+e0.625t(2.567136.1ο)ej1.45t

Further solve as,

v0(t)=2(2.567)e0.625t(cos(1.45t+136.1ο))=5.134e0.625t(cos(1.45t+136.1ο))

Conclusion:

Therefore, the value of output voltage, v0(t)=5.134e0.625t(cos(1.45t+136.1ο))V.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Create the PLC ladder logic diagram for the logic gate circuit displayed in Figure 7-35. The pilot light red (PLTR) output section has three inputs: PBR, PBG, and SW. Pushbutton red (PBR) and pushbutton green (PBG) are inputs to an XOR logic gate. The output of the XOR logic gate and the inverted switch SW) are inputs to a two-input AND logic gate. These inputs generate the pilot light red (PLTR) output. The two-input AND logic gate output is also fed into a two-input NAND logic PBR PBG SW TSW PLTR Figure 7-35. Logic gate circuit for Example 7-3. PLTW Goodheart-Willcox Publisher gate. The temperature switch (TSW) is the other input to the NAND logic gate. The output generated from the NAND logic gate is labeled pilot light white (PLTW).
Imaginary Axis (seconds) 1 6. Root locus for a closed-loop system with L(s) = is shown below. s(s+4)(s+6) 15 10- 0.89 0.95 0.988 0.988 -10 0.95 -15 -25 0.89 20 Root Locus 0.81 0.7 0.56 0.38 0.2 5 10 15 System: sys Gain: 239 Pole: -0.00417 +4.89 Damping: 0.000854 Overshoot (%): 99.7 Frequency (rad/s): 4.89 System: sys Gain: 16.9 Pole: -1.57 Damping: 1 Overshoot (%): 0 Frequency (rad/s): 1.57 0.81 0.7 0.56 0.38 0.2 -20 -15 -10 -5 5 10 Real Axis (seconds) From the values shown in the figure, compute the following. a) Range of K for which the closed-loop system is stable. b) Range of K for which the closed-loop step response will not have any overshoot. Note that when all poles are real, the step response has no overshoot. c) Smallest possible peak time of the system. Note that peak time is the smallest when wa is the largest for the dominant pole. d) Smallest possible settling time of the system. Note that peak time is the smallest when σ is the largest for the dominant pole.
For a band-rejection filter, the response drops below this half power point at two locations as visualised in Figure 7, we need to find these frequencies. Let's call the lower frequency-3dB point as fr and the higher frequency -3dB point fH. We can then find out the bandwidth as f=fHfL, as illustrated in Figure 7. 0dB Af -3 dB Figure 7. Band reject filter response diagram Considering your AC simulation frequency response and referring to Figure 7, measure the following from your AC simulation. 1% accuracy: (a) Upper-3db Frequency (fH) = Hz (b) Lower-3db Frequency (fL) = Hz (c) Bandwidth (Aƒ) = Hz (d) Quality Factor (Q) =

Chapter 17 Solutions

Engineering Circuit Analysis

Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,