Concept explainers
Write balanced equations and solubility product expressions for the solubility equilibria of the following compounds:
![Check Mark](/static/check-mark.png)
Interpretation:
Thebalanced equation and the solubility product constant of the given compounds are to be calculated.
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperatureis termed as the solubility of the solute in the solvent at that temperature.
The solubility product of a sparingly-soluble salt is given as the product of the concentration of the ions raised to the power equal to the number of times the ion occurs in the equation, after the dissociation of the electrolyte.
The number of moles of the solute dissolved per litre of the solution is called molar solubility.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
Answer to Problem 45QP
Solution:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Explanation of Solution
a)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
b)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
c)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for theionization of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
d)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
e)
The balanced equation for the dissociation of
The ICE table for the ionisation for
Let
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
f)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
Want to see more full solutions like this?
Chapter 17 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forward
- Illustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forward
- CS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forwardCS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forwardThe following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)