Concept explainers
Write balanced equations and solubility product expressions for the solubility equilibria of the following compounds:

Interpretation:
Thebalanced equation and the solubility product constant of the given compounds are to be calculated.
Concept introduction:
The amount of solute dissolved in a given volume of the solvent to form a saturated solution at a given temperatureis termed as the solubility of the solute in the solvent at that temperature.
The solubility product of a sparingly-soluble salt is given as the product of the concentration of the ions raised to the power equal to the number of times the ion occurs in the equation, after the dissociation of the electrolyte.
The number of moles of the solute dissolved per litre of the solution is called molar solubility.
For a general reaction:
The solubility product can be calculated by the expression as:
Here,
Answer to Problem 45QP
Solution:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Balanced equation:
Solubility product:
Explanation of Solution
a)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
b)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
c)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for theionization of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
d)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
e)
The balanced equation for the dissociation of
The ICE table for the ionisation for
Let
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
f)
The balanced equation for the dissociation of
Let
The initial change equilibrium table for the ionisation of
The equilibrium expression for the reaction is written as follows:
Here,
Substitute the values of
Hence, the solubility product constant of
Want to see more full solutions like this?
Chapter 17 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- Determine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forward
- Indicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forwardIndicate the correct options when referring to Luther's equation:1. It is not always easy to compare its results with experimental results.2. It depends on the number of electrons exchanged in the species involved.3. Its foundation is thermodynamic.4. The values calculated with it do not depend on temperature.arrow_forward
- Indicate which of the unit options correspond to a measurement of current density.1. A s m-22. mC s-1 m-23. Ω m-24. V J-1 m-2arrow_forwardIndicate the options that are true when referring to electrode membranes:1. The Donnan potential, in general, does not always intervene in membranes.2. There are several ways to classify the same membrane.3. Any membrane can be used to determine the pH of a solution.4. Only one solution and one membrane are needed to determine the pH of that solution.arrow_forwardCalculate the maximum volume of carbon dioxide gasarrow_forward
- In galvanic cells, their potential1. can be measured with a potentiometer2. does not depend on the equilibrium constant of the reaction occurring within them3. is only calculated from the normal potentials of the electrodes they comprise4. can sometimes be considered a variation in a potential differencearrow_forwardIf some molecules in an excited state collide with other molecules in a ground state, this process1. can occur in solution and in the gas phase.2. can be treated as a bimolecular process.3. always results in collisional deactivation.4. does not compete with any other process.arrow_forwardRadiation of frequency v is incident on molecules in their ground state. The expected outcome is that1. the molecules do not change their state.2. the molecules transition to an excited state.3. the molecules undergo a secondary process.4. collisional deactivation occurs.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





