Aqueous acid reacts with carbonate Jons to produce carbonic acid, which produces carbon dioxide. A 1.0-L saturated silver carbonate solution at 5°C is treated with enough hydrochloric acid to consume all the carbonate in solution. The carbon dioxide generated is collected in a 19-mL vial and exerts a pressure of 114 mmHg at 25°C . At 25°C, the K s p of silver carbonate is 8.1 × 10 − 12 . Based on this and the answer to question 1, what can be said about the dissolution of silver carbonate? a) It is endothermic. b) It is exothermic. c) It is neither exothermic nor endothermic. d) It produces hydrogen gas.
Aqueous acid reacts with carbonate Jons to produce carbonic acid, which produces carbon dioxide. A 1.0-L saturated silver carbonate solution at 5°C is treated with enough hydrochloric acid to consume all the carbonate in solution. The carbon dioxide generated is collected in a 19-mL vial and exerts a pressure of 114 mmHg at 25°C . At 25°C, the K s p of silver carbonate is 8.1 × 10 − 12 . Based on this and the answer to question 1, what can be said about the dissolution of silver carbonate? a) It is endothermic. b) It is exothermic. c) It is neither exothermic nor endothermic. d) It produces hydrogen gas.
Solution Summary: The author explains how the dissolution of silver carbonate using solubility product is to be determined.
Aqueous acid reacts with carbonate Jons to produce carbonic acid, which produces carbon dioxide. A 1.0-L saturated silver carbonate solution at
5°C
is treated with enough hydrochloric acid to consume all the carbonate in solution. The carbon dioxide generated is collected in a 19-mL vial and exerts a pressure of 114 mmHg at
25°C
.
At
25°C, the
K
s
p
of silver carbonate is
8.1
×
10
−
12
. Based on this and the answer to question 1, what can be said about the dissolution of silver carbonate?
Given a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ
Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this
system:
rise
Under these conditions, will the pressure of N2 tend to rise or fall?
☐ x10
fall
Is it possible to reverse this tendency by adding H₂?
In other words, if you said the pressure of N2 will tend to rise, can that be
changed to a tendency to fall by adding H2? Similarly, if you said the
pressure of N will tend to fall, can that be changed to a tendency to rise
by adding H₂?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of H₂ needed to reverse it.
Round your answer to 2 significant digits.
yes
no
☐
atm
Х
ด
?
olo
18
Ar
Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell