PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 30P
To determine
The pressure in the chamber.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A piece of aluminum (bulk modulus 7.1 x 10¹0 N/m²)
is placed in a vacuum chamber where the air
pressure is 0.378 x 105 Pa. The vacuum pump is then
turned on and the pressure is further reduced to
zero. Determine the fractional change AV/V in the
volume of the aluminum.
Collectible coins are sometimes plated with gold to enhance their beauty and value. Consider a commemorative quarter-dollar advertised for sale at $4.98. It has a diameter of 24.3 mm, a thickness of 1.78 mm, and is completely covered with a layer of pure gold 0.214 µm thick. The volume of the plating is equal to the thickness of the layer multiplied by the area to which it is applied. The patterns on the faces of the coin and the grooves on its edge have a negligible effect on its area. Assume the price of gold is $14.1 per gram.
(a) Find the cost of the gold added to the coin.
(b) Does the cost of the gold significantly enhance the value of the coin?
Yes or No
Explain your answer.
The settling rate of particulates in the air follows Stokes' law. If particulates of diameter of 10 nm emitted in the
atmosphere are found to settle out after 2 days, how long would it take particulates of the same material with a diameter
of 5 nm to settle out if they are emitted from the same source?
Chapter 17 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Prob. 3PCh. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10P
Ch. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - Prob. 21PCh. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - Prob. 58PCh. 17 - Prob. 59PCh. 17 - Prob. 60PCh. 17 - Prob. 61PCh. 17 - Prob. 62PCh. 17 - Prob. 63PCh. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68PCh. 17 - Prob. 69PCh. 17 - Prob. 70PCh. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77PCh. 17 - Prob. 78PCh. 17 - Prob. 79PCh. 17 - Prob. 80P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Oxygen reaches the veinless cornea of the eye by diffusing through its tear layer, which is 0.500-mm thick. How long does it take the average oxygen molecule to do this?arrow_forwardA 5.50-kg black cat and her four black kittens, each with mass 0.800 kg, sleep snuggled together on a mat on a cool night, with their bodies forming a hemisphere. Assume the hemisphere has a surface temperature of 31.0°C, an emissivity of 0.970, and a uniform density of 990 kg/m3. Find(a) the radius of the hemisphere, (b) the area of its curved surface, (c) the radiated power emitted by the cats at their curved surface, and (d) the intensity of radiation at this surface. You may think of the emitted electromagnetic wave as having a single predominant frequency. Find (e) the amplitude of the electric field in the electromagnetic wave just outside the surface of the cozy pile and (f) the amplitude of the magnetic field.(g) What If? The next night, the kittens all sleep alone, curling up into separate hemispheres like their mother. Find the total radiated power of the family. (For simplicity, ignore the cats’ absorption of radiation from the environment.)arrow_forwardTwo soap bubbles in vacuum having radii 3cm and 4cm respectively coalesce under isothermal conditions to form a single bubble. What is the radius of new bubble.arrow_forward
- 7. A 5.50-kg black cat and her four black kittens, each with mass 0.800 kg, sleep snuggled together on a mat on a cool night, with their bodies forming a hemisphere. Assume the hemisphere has a surface temperature of 31.0°C, an emissivity of 0.970, and a uniform density of 990 kg/m³. Find (a) the radius of the hemisphere, (b) the area of its curved surface, (c) the radiated power emitted by the cats at their curved surface, and (d) the intensity of radiation at this surface. You may think of the emitted electromagnetic wave as having a single predominant frequency. Find (e) the amplitude of the electric field in the electromagnetic wave just outside the surface of the cozy pile and (f) the amplitude of the magnetic field. (g) The next night, the kittens all sleep alone, curling up into separate hemispheres like their mother. Find the total radiated power of the family. (For simplicity, ignore the cats' absorption of radiation from the environment.)arrow_forwardA mono digital sound sample has a bit depth of 8 bits and a sampling rate of 9000 Hz. How much memory in bytes would it take to store 45 minutes of sound at this quality? Calculate your answer in bytes.arrow_forwardThe filament of an evacuated light bulb has length 10 cm, diameter 0.2 mm and emissivity 0.2, calculate the power it radiates at 2000°K. (o=5.67 x 10-8 w/m2K4).arrow_forward
- Inside the wall of a house, an L-shaped section of hot-water pipe consists of three parts: a straight, horizontal piece h = 28.0 cm long, an elbow, and a straight vertical piece l = 152 cm long (figure below). A stud and a second-story floorboard hold the ends of this section of copper pipe stationary. Find the magnitude and direction of the displacement of the pipe elbow when the coordinate system with it's origin at the elbow, the +x-axis to the right in line with the horizontal water flow is turned on, raising the temperature of the pipe from 18.0°C to 43.6°C. (Assume pipe and the +y-axis going upward.) 0.6568 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. mm 79.57 magnitude direction ° (clockwise from the +x-axis) Need Help? Read Itarrow_forward(a) In the deep space between galaxies, me density of atoms is as low as 106atoms/m3, and me temperature is a frigid 2.7 K. What is me pressure? (b) What volume (in m3) is occupied by 1 mol of gas? (c) If this volume is a cube, what is the length of its sides in kilometers?arrow_forwardThe Pyrex glass mirror in a telescope has a diameter of170 in.The temperature ranges from -16C to 32C on the locationof the telescope.What is the maximum change in the diameterof the mirror, assuming that the glass can freely expand andcontract?arrow_forward
- Im cluelessarrow_forwardA flat piece of glass is supported horizontally above the flat end of a 10.0-cm-long metal rod that has its lower end rigidly fixed. The thin film of air between the rod and the glass is observed to be bright when illuminated by light of wavelength 500 nm. As the temperature is slowly increased by 25.0°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?arrow_forwardA2 i cant seem to understand this from our lecture, i would also love an explanation on how to understand these for the future !arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY