
Concept explainers
(a)
The temperature at which the root mean square speeds for
(a)

Explanation of Solution
Given:
The escape speed of the surface of the planet is
Formula used:
Write the expression for the rms speed of the molecule.
Here,
Equate
Here,
Solve the above equation for
Calculation:
Substitute
Conclusion:
The temperature is
(b)
The temperature at which the root mean square speeds for
(b)

Explanation of Solution
Given:
The escape speed of the surface of the planet is
Formula used:
Write the expression for the rms speed of the molecule.
Here,
Calculation:
Substitute
Conclusion:
The temperature is
(c)
The reason for the low hydrogen in the earth atmosphere.
(c)

Explanation of Solution
Given:
The escape speed of the surface of the planet is
Introduction:
All the giant planets like Jupiter, Saturn, Uranus and Neptune contains helium and hydrogen in the atmosphere of the giant planets.
Earth contains low amount of hydrogen in the atmosphere because hydrogen gas is very light as compared to other elements and has high escape speed at the high temperature and thus hydrogen gas escapes from the earth’s atmosphere.
Conclusion:
The hydrogen gas molecules attain greater escape speed than other elements and therefore earth’s atmosphere contains low amount of hydrogen.
(d)
(d)

Explanation of Solution
Given:
The escape speed of the surface of the planet is
Gravity on moon is one-sixth the gravity on moon.
Radius of earth is
Formula used:
Substitute
Substitute
Here,
Calculation:
Substitute
Thus, the temperature of
Substitute
Conclusion:
The escape speed is low on moon as the acceleration due to gravity is less there. Thus the largerpercentage of molecules moves with escape speed.
Want to see more full solutions like this?
Chapter 17 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





