Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 2P
Consider Joule’s apparatus described in Figure P17.2. The mass of each of the two blocks is 1.50 kg, and the insulated tank is filled with 200 g of water. What is the increase in the water’s temperature after the blocks fall through a distance of 3.00 m?
Figure P17.2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A150 cm long copper rod is 3kg in mass. What is the change in length (in centimeters) in the rod if 45000 J of energy is transferred to it? The coefficient of linear expansion of copper is 17x10^-6 /C°. The specific heat capacity of copper is 390 J/kg.C°.
Round-off your answer to the nearest thousandths. Do not type the unit of your final answer.
A 12 cm -diameter cylinder contains argon gas at 10 atm pressure and a temperature of 60 ∘C . A piston can slide in and out of the cylinder. The cylinder's initial length is 23 cm . 2600 J of heat are transferred to the gas, causing the gas to expand at constant pressure.
What is the final temperature of the cylinder?
What is the final length of the cylinder?
A 900 g copper rod at 20 degrees celcius has a length of 1.0000 m. The thermal expansion coefficient of copper is 17 x 10^-6 degrees celcius -1. The specific heat capacity is 0.385 kJ/kg degrees celcius.
Question A: The copper is heated to 400 degrees celcius. What is the new length? Give the answer in meters and with 4 digits of precision after the decimal.
Question B: The hot copper is then quenched by dunking the entire rod in a bucket with 10 kg of water at 20 degrees celcius. The specific heat capaciy of water is 4.18 kJ/kg degrees celcius. If none of the water turns to steam what is the equilibrium temp of the copper rod and water? Please give the answer in degrees celcius
Question C: You measure the equilbrium temp and find that it is 24 degrees celcius. If the latent heat of vaporization of water is 2,260 kJ/kg, what mass of water turned to steam? Answer in grams
Chapter 17 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 17.2 - Prob. 17.1QQCh. 17.3 - Prob. 17.2QQCh. 17.3 - Prob. 17.3QQCh. 17.5 - Prob. 17.4QQCh. 17.6 - Characterize the paths in Figure 17.10 as...Ch. 17.7 - (i) How does the internal energy of an ideal gas...Ch. 17.10 - Prob. 17.7QQCh. 17 - Prob. 1OQCh. 17 - A 100-g piece of copper, initially at 95.0C, is...Ch. 17 - Prob. 3OQ
Ch. 17 - Prob. 4OQCh. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Star A has twice the radius and twice the absolute...Ch. 17 - If a gas is compressed isothermally, which of the...Ch. 17 - When a gas undergoes an adiabatic expansion, which...Ch. 17 - Ethyl alcohol has about one-half the specific heat...Ch. 17 - Prob. 15OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Pioneers stored fruits and vegetables in...Ch. 17 - Why is a person able to remove a piece of dry...Ch. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - It is the morning of a day that will become hot....Ch. 17 - You need to pick up a very hot cooking pot in your...Ch. 17 - Rub the palm of your hand on a metal surface for...Ch. 17 - Prob. 10CQCh. 17 - Prob. 11CQCh. 17 - Prob. 12CQCh. 17 - On his honeymoon, James Joule traveled from...Ch. 17 - Consider Joules apparatus described in Figure...Ch. 17 - Prob. 3PCh. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - In an insulated vessel, 250 g of ice at 0C is...Ch. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - A 1.00-kg block of copper at 20.0C is dropped into...Ch. 17 - A resting adult of average size converts chemical...Ch. 17 - Prob. 21PCh. 17 - Prob. 22PCh. 17 - An ideal gas is enclosed in a cylinder with a...Ch. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - A sample of an ideal gas goes through the process...Ch. 17 - A thermodynamic system undergoes a process in...Ch. 17 - A gas is taken through the cyclic process...Ch. 17 - Consider the cyclic process depicted in Figure...Ch. 17 - Why is the following situation impossible? An...Ch. 17 - An ideal gas initially at 300 K undergoes an...Ch. 17 - In Figure P17.32, the change in internal energy of...Ch. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - One mole of an ideal gas does 3 000 J of work on...Ch. 17 - A 1.00-mol sample of hydrogen gas is heated at...Ch. 17 - A sample of a diatomic ideal gas has pressure P...Ch. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Review. This problem is a continuation of Problem...Ch. 17 - Prob. 45PCh. 17 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 17 - Prob. 47PCh. 17 - An ideal gas with specific heat ratio confined to...Ch. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Air (a diatomic ideal gas) at 27.0C and...Ch. 17 - Prob. 54PCh. 17 - Prob. 55PCh. 17 - Prob. 56PCh. 17 - Prob. 57PCh. 17 - Prob. 58PCh. 17 - Prob. 59PCh. 17 - Prob. 60PCh. 17 - Prob. 61PCh. 17 - Prob. 62PCh. 17 - The surface of the Sun has a temperature of about...Ch. 17 - Prob. 64PCh. 17 - At high noon, the Sun delivers 1 000 W to each...Ch. 17 - A theoretical atmospheric lapse rate. Section 16.7...Ch. 17 - Prob. 67PCh. 17 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 17 - An aluminum rod 0.500 m in length and with a...Ch. 17 - Prob. 70PCh. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77PCh. 17 - Prob. 78PCh. 17 - Prob. 79PCh. 17 - Prob. 81PCh. 17 - Prob. 82PCh. 17 - Prob. 84PCh. 17 - Prob. 85PCh. 17 - Prob. 86PCh. 17 - Prob. 87PCh. 17 - Prob. 88PCh. 17 - Water in an electric teakettle is boiling. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Water is placed into an iron container. They are thermally isolated.The iron container has a mass of 600. g and is initially at 90.0 degrees Celsius. The water has a mass of 180. g and is initially at 30.0 degrees Celsius.What is the temperature of the container and water once they reach thermal equilibrium?arrow_forwardIn an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 10.3 oC. The temperature at the inside surface of the wall is 18.1 oC. The wall is 0.14 m thick and has an area of 6.5 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forwardWhile hanging out in Lab, you decide to conduct another calorimetry experiment, but this time, you want to do it on a bit larger scale. You place 3.8 kg of water in a large aluminum can that has a mass of 15 kg. You heat the water and can up to an initial temperature of 80◦ C, and then slowly add 400 g of ice that has an initial temperature of −10◦ C. You stir the ice and water until all of the ice melts, and the system comes to an equilibrium temperature of 32◦ C. You feel good about things until you realize that you did not cover the aluminum can and that some heat was lost to the environment during the experiment. Use the information provided to calculate the amount of heat that was lost to the environment.arrow_forward
- JE JIE U 8. A 3.2 m length of copper pipe extends directly from a hot-water heater in a basement to a faucet on the first floor of a house. If the faucet isn't fixed in place, how much will it rise when the pipe is heated from 20.0° C to 85.9° C. The coefficient of linear expansion for copper is 1.6*10$ K-. An amergensy vahicla is traveling at 45 m/s annrnaching a car heading inarrow_forwardA pot of water is boiling under one atmosphere of pressure. Assume that heat enters the pot only through its bottom, which is copper and rests on a heating element. In two minutes, the mass of water boiled away is m = 2.5 kg. The radius of the pot bottom is R = 8.0 cm and the thickness is L = 1.0 mm. What is the temperature of the heating element in contact with the pot? TE = Number i Unitsarrow_forwardA 24.0 g copper ring at 0°C has an inner diameter of D = 2.90760 cm. A hollow aluminum sphere at 81.0°C has a diameter of d = 2.91274 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere? The linear expansion coefficient of aluminum is 23.0 x 106 /C°, the linear expansion coefficient of copper is 17.0 x 10-6 /C, the specific heat of aluminum is 900 J/kg-K, and the specific heat of copper is 386 J/kg-K. Al Gu Number i Unitsarrow_forward
- When you apply the brakes on your car, the kinetic energy of your vehicle is transformed into thermal energy in your brake disks. During a mountain descent, a 28.00-cm-diameter iron brake disk heats up from 30°C to 180°C. What is the diameter of the disk after it heats up?arrow_forwardA plane wall has a thickness of 55 cm and is made of a material with a thermal conductivity of 45 W/m K. The inside and outside surfaces of the wall are maintained at 40°C and 80°C, respectively. What is the temperature inside the wall at a distance of 19 cm measured from the inside surface of the wall? Express your answer in °C.arrow_forwardA 6.0-cm-diameter cylinder of nitrogen gas has a 4.0-cm-thick movable copper piston. The cylinder is oriented vertically, as shown in the figure, and the air above the piston is evacuated. When the gas temperature is 25 °C, the piston floats 20 cm above the bottom of the cylinder. (Figure 1) Figure 20 cm Vacuum Piston. Ź 6 cm 1 of 1 Then 1.5 J of heat energy are transferred to the gas. What is the new equilibrium temperature of the gas in °C? Express your answer in degrees Celsius. ► View Available Hint(s) T₂ = 115.06992 Submit Part D [Π| ΑΣΦ X Incorrect; Try Again; 5 attempts remaining Submit What is the final height of the piston? Express your answer with the appropriate units. ► View Available Hint(s) Previous Answers LO L₂= 28.05 Part E 6 HÅ Previous Answers cm μÀ ? X Incorrect; Try Again; 5 attempts remaining How much work is done on the gas as the piston rises? Express your answer with the appropriate units. ► View Available Hint(s) ? ? °Carrow_forward
- A pot of water is boiling under one atmosphere of pressure. Assume that heat enters the pot only through its bottom, which is copper and rests on a heating element. In two minutes, the mass of water boiled away is m = 4.0 kg. The radius of the pot bottom is R = 9.0 cm and the thickness is L = 2.0 mm. What is the temperature of the heating element in contact with the pot?arrow_forwardA pipe of length L connects to thermal reservoirs that are kept constant at temperatures T1 and T2. The pipe contains a gas with a thermal conductivity κ, a density ρ, and a heat capacity cP. What is the temperature T of the gas in the tube at a distance x=0.4L away from the thermal reservoir with temperature T1? Select one: a.T=T1+0.4(T2−T1) b.T=T1+0.4κρcP(T2−T1) c.T=T1+0.4(T1−T2) d.T=0.5(T1+T2)arrow_forwardA circular disk of an unknown special alloy has a diameter of 0.051 m. When we increase the temperature by 60.8 degrees Celsius, the diameter increases by an amount of +9.3 x10-5 m. What is the coefficient of thermal linear expansion of that alloy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY