
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
5th Edition
ISBN: 9780134032610
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 25PCE
(a)
To determine
The effect on the root mean square speed of gas when the number of molecules are doubled while the volume and pressure are constant.
(b)
To determine
The final root mean square speed when the initial root mean square speed is
1300 m / sec
.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q1:
Find the volume of the object shown to the correct number of significant
figures. (
22.37 cm
9.10 cm
85.75 cm
Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the
Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year,
what is this speed in SI units? (
Q3:
Suppose a well known professor Raitman discovers Raitman's Law which
states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are
displacement, velocity, acceleration, and time, respectively? (
Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of
spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below.
This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble
horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…
Q6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain
attempts to cross the river in his ferry at right angles to the bank but by the
time it has reached the opposite bank the captain awakes and notices that it is
1.0 km downstream. If the captain wishes to take his boat directly across, what
angle upstream must he point the boat assuming the boat speed remains the
same? (
Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a
nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from
above) at a constant speed of 8 m s-1. From an instant when the stopper is
moving in a northerly direction, find its change in velocity after moving round
(a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a
revolution.
Chapter 17 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Ch. 17.1 - Rank the following ideal-gas systems in order of...Ch. 17.2 - If the Kelvin temperature of a gas is doubled, by...Ch. 17.3 - A metal rod of a given initial length and...Ch. 17.4 - A portion of a substances phase diagram is shown...Ch. 17.5 - Which requires more heat: melting 100 kg of copper...Ch. 17.6 - An ice cube is placed in a cup of water. A few...Ch. 17 - How is the air pressure in a tightly sealed house...Ch. 17 - The average speed of air molecules in your room is...Ch. 17 - Is it possible to change both the pressure and the...Ch. 17 - Prob. 4CQ
Ch. 17 - A camping stove just barely boils water on a...Ch. 17 - An autoclave is a device used to sterilize medical...Ch. 17 - As the temperature of ice is increased, it changes...Ch. 17 - BIO Isopropyl alcohol is sometimes rubbed onto a...Ch. 17 - A drop of water on a kitchen counter evaporates in...Ch. 17 - (a) Is the number of molecules in one mole of N2...Ch. 17 - Predict/Explain If you put a helium-filled balloon...Ch. 17 - Two containers hold ideal gases at the same...Ch. 17 - Prob. 4PCECh. 17 - BIO After emptying her lungs, a person inhales 4.3...Ch. 17 - An automobile tire has a volume of 0.0185 m3. At a...Ch. 17 - Prob. 7PCECh. 17 - A compressed-air tank holds 0.500 m3 of air at a...Ch. 17 - Four ideal gases have the following pressures, P,...Ch. 17 - A balloon contains 3.9 liters of nitrogen gas at a...Ch. 17 - Prob. 11PCECh. 17 - Predict/Calculate A bicycle tire with a volume of...Ch. 17 - A 515-cm3 flask contains 0.460 g of a gas at a...Ch. 17 - Prob. 14PCECh. 17 - The air inside a hot-air balloon has an average...Ch. 17 - Prob. 16PCECh. 17 - Consider the system described in the previous...Ch. 17 - Prob. 18PCECh. 17 - Prob. 19PCECh. 17 - If the translational speed of molecules in an...Ch. 17 - At what temperature is the rms speed of H2 equal...Ch. 17 - Suppose a planet has an atmosphere of pure ammonia...Ch. 17 - Prob. 23PCECh. 17 - Prob. 24PCECh. 17 - Prob. 25PCECh. 17 - What is the temperature of a gas of CO2 molecules...Ch. 17 - The rms speed of a sample of gas is increased by...Ch. 17 - Prob. 28PCECh. 17 - A 380-mL spherical flask contains 0.065 mol of an...Ch. 17 - Prob. 30PCECh. 17 - A rock climber hangs freely from a nylon rope that...Ch. 17 - BIO To stretch a relaxed biceps muscle 2.5 cm...Ch. 17 - A 22-kg chimpanzee hangs from the end of a...Ch. 17 - The Marianas Trench The deepest place in all the...Ch. 17 - Four cylindrical rods with various cross-sectional...Ch. 17 - Predict/Calculate A steel wire 4.1 m long...Ch. 17 - BIO Spiderweb An orb weaver spider with a mass of...Ch. 17 - Predict/Calculate Two rods of equal length (0.55...Ch. 17 - A piano wire 0.82 m long and 0.93 mm in diameter...Ch. 17 - The formation of ice from water is accompanied by...Ch. 17 - Vapor Pressure for Water Figure 17-35 shows a...Ch. 17 - Using the vapor-pressure curve given in Figure...Ch. 17 - Prob. 43PCECh. 17 - Prob. 44PCECh. 17 - Predict/Calculate The Vapor Pressure of CO2 A...Ch. 17 - Phase Diagram for Water The phase diagram for...Ch. 17 - Phase Diagram for CO2 The phase diagram for CO2 is...Ch. 17 - Prob. 48PCECh. 17 - How much heat must be removed from 1.96 kg of...Ch. 17 - A heat transfer of 9.5 105 J is required to...Ch. 17 - How much heat must be added to 2.55 kg of copper...Ch. 17 - An ammonia refrigeration cycle involves the...Ch. 17 - Prob. 53PCECh. 17 - Prob. 54PCECh. 17 - Prob. 55PCECh. 17 - Figure 17-30 shows a temperature-versus-heat plot...Ch. 17 - Predict/Calculate Suppose the 1.000 kg of water in...Ch. 17 - Prob. 58PCECh. 17 - When you go out to your car one cold winter...Ch. 17 - A large punch bowl holds 3.99 kg of lemonade...Ch. 17 - A 155-g aluminum cylinder is removed from a liquid...Ch. 17 - An 825-g iron block is heated to 352 C and placed...Ch. 17 - Party Planning You are expecting to serve 32 cups...Ch. 17 - Predict/Calculate A 35-g ice cube at 0.0 C is...Ch. 17 - A 48-g block of copper at 12 C is added to 110 g...Ch. 17 - A 0 075-kg ice cube at 0.0 C is dropped into a...Ch. 17 - To help keep her barn warm on cold days, a farmer...Ch. 17 - CE As you go up in attitude, do you expect the...Ch. 17 - Prob. 69GPCh. 17 - Prob. 70GPCh. 17 - Prob. 71GPCh. 17 - Cooling Computers Researchers are developing heat...Ch. 17 - Prob. 73GPCh. 17 - Prob. 74GPCh. 17 - Evaporating Atmosphere Hydrogen gas evaporates...Ch. 17 - Prob. 76GPCh. 17 - A Boiling Geyser (a) The column of water that...Ch. 17 - A Melting Glacier (a) A glacier is made of ice of...Ch. 17 - Peter catches a 4 2-kg striped bass on a fishing...Ch. 17 - A steel ball (density=7860kg/m3) with a diameter...Ch. 17 - A lead brick with the dimensions shown in Figure...Ch. 17 - (a) Find the amount of heat that must be extracted...Ch. 17 - Mighty Ice Lift A tremendous force is generated...Ch. 17 - Orthopedic Implants Metals such as titanium and...Ch. 17 - Students on a spring break picnic bring a cooler...Ch. 17 - A 5.9-kg block of ice at 1.5 C slides on a...Ch. 17 - A cylindrical copper rod 37 cm long and 7.5 cm in...Ch. 17 - Prob. 88PPCh. 17 - Prob. 89PPCh. 17 - Prob. 90PPCh. 17 - Prob. 91PPCh. 17 - Referring to Example 17-17 (a) Find the final...Ch. 17 - Referring to Example 17-17 (a) Find the final...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forwardThis is data I collected from a Centripetal Acceleration and Force lab. Please help with interpreting the data, thanks!arrow_forwardAnswer thisarrow_forward
- A coin is located 20.0 cm to the left of a converging lens. (f=13.0cm). A second, identical lens is placed to the right of the first lens, such that the image formed by the combination. has the same size and orientation as the original coin. Find the separation between the lenses.arrow_forwardA converging lens (f₁ = 10.9cm) is located 33.0 cm to the left of a diverging lens (f2=-5.64 cm). A postage stamp is placed 35.4 cm to the left of the converging lens. Find the overall magnificationarrow_forwardA farsighted man uses contact lenses with a refractive power of 2.00 diopters. Wearing the contacts, he is able to yead books held no closer than 25.0 cm from would like a his eyes. He prescription for eyeglasses to serve the same purpose. What is the correct prescription for the eyeglasses if the distance from the eyeglasses to his eyes is 200 cm 2.00 dioptersarrow_forward
- from a concave lens. The An object 5.3cm tall is 25.0 cm from resulting image is two-fifths is two-fifths as large the focal length of the lens? as the object. What is as cmarrow_forwardThe drawing shows a rectangular block of glass (n=1.56) surrounded by liquid carbon disulfide (n=1.64). A ray of light is incident on the glass at point A with a O₁ = 47.0° angle of incidence. At what angle of refraction does the ray leave the glass at point B? A Barrow_forwardThere is a magic item in Dungeons & Dragons called The Baton of Many Sizes, which is a staff that can magically change lengths between 0.305 m (1 foot) long and 15.2 m (50 feet) long, though it always has a mass of 3.18 kg. Assume the moment of inertia of the staff is 112mL2112mL2 where L is the total length. The angular acceleration is 4.9075 rad/s^2, the angular velocity is 17.57 rad/s. The staff then shrinks to a length of 1.12 m while no longer applying any torque. What is the staff’s new angular velocity?arrow_forward
- Finding my misplace science book what are the steps to in the given flowchart observe and question from a hypothesis test the hypothesis analyse and then the plate form a new hypothesis is the new hypot this is form a conclusionarrow_forwardSamus Aran from the Metroid series of video games has the ability to roll into a ball to get into smaller areas. Samus rolls down a path which drops down 22.0 m. If she was at rest when she started at the top, what is her linear velocity at the bottom of the path? Treat her as a solid sphere with a moment of inertia of 2/5 mr^2 .arrow_forwardMoon Knight, from both comics and the show of the same name, has crescent shaped daggers he throws at enemies. To throw a crescent dagger he applies a force of 0.918 N at an angle of 75.0° relative to the dagger’s center of mass at a point 0.0690 m away from the dagger’s center of mass. If the crescent dagger has a moment of inertia of 2.57⋅10^−5 kg⋅m^2 , what is the angular acceleration of a crescent dagger as it is thrown?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning