For any relation
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Elements Of Modern Algebra
- A relation R on a nonempty set A is called asymmetric if, for x and y in A, xRy implies yRx. Which of the relations in Exercise 2 areasymmetric? In each of the following parts, a relation R is defined on the set of all integers. Determine in each case whether or not R is reflexive, symmetric, or transitive. Justify your answers. a. xRy if and only if x=2y. b. xRy if and only if x=y. c. xRy if and only if y=xk for some k in . d. xRy if and only if xy. e. xRy if and only if xy. f. xRy if and only if x=|y|. g. xRy if and only if |x||y+1|. h. xRy if and only if xy i. xRy if and only if xy j. xRy if and only if |xy|=1. k. xRy if and only if |xy|1.arrow_forwardLabel each of the following statements as either true or false. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is symmetric xRy implies yRx. Since R is transitive xRy and yRx implies xRx. Hence R is alsoreflexive and thus an equivalence relation on A.arrow_forwardLet and be lines in a plane. Decide in each case whether or not is an equivalence relation, and justify your decisions. if and only ifand are parallel. if and only ifand are perpendicular.arrow_forward
- For each of the following mappings f:ZZ, determine whether the mapping is onto and whether it is one-to-one. Justify all negative answers. a. f(x)=2x b. f(x)=3x c. f(x)=x+3 d. f(x)=x3 e. f(x)=|x| f. f(x)=x|x| g. f(x)={xifxiseven2x1ifxisodd h. f(x)={xifxisevenx1ifxisodd i. f(x)={xifxisevenx12ifxisodd j. f(x)={x1ifxiseven2xifxisoddarrow_forward2. In each of the following parts, a relation is defined on the set of all integers. Determine in each case whether or not is reflexive, symmetric or transitive. Justify your answers. a. if and only if . b. if and only if . c. if and only if for some in . d. if and only if . e. if and only if . f. if and only if . g. if and only if . h. if and only if . i. if and only if . j. if and only if . k. if and only if .arrow_forwardIn Exercises , prove the statements concerning the relation on the set of all integers. 18. If and , then .arrow_forward
- For determine which of the following relations onare mappings from to, and justify your answer. b. d. f.arrow_forward5. For each of the following mappings, determine whether the mapping is onto and whether it is one-to-one. Justify all negative answers. (Compare these results with the corresponding parts of Exercise 4.) a. b. c. d. e. f.arrow_forward3. For each of the following mappings, write out and for the given and, where.arrow_forward
- Complete the proof of Theorem 5.30 by providing the following statements, where and are arbitrary elements of and ordered integral domain. If and, then. One and only one of the following statements is true: . Theorem 5.30 Properties of Suppose that is an ordered integral domain. The relation has the following properties, whereand are arbitrary elements of. If then. If and then. If and then. One and only one of the following statements is true: .arrow_forward21. A relation on a nonempty set is called irreflexive if for all. Which of the relations in Exercise 2 are irreflexive? 2. In each of the following parts, a relation is defined on the set of all integers. Determine in each case whether or not is reflexive, symmetric, or transitive. Justify your answers. a. if and only if b. if and only if c. if and only if for some in . d. if and only if e. if and only if f. if and only if g. if and only if h. if and only if i. if and only if j. if and only if. k. if and only if.arrow_forward10. Let and be mappings from to. Prove that if is invertible, then is onto and is one-to-one.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,