Let
b. For the mapping
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Elements Of Modern Algebra
- Find the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forwardLet T be a linear transformation from P2 into P2 such that T(1)=x,T(x)=1+xandT(x2)=1+x+x2. Find T(26x+x2).arrow_forward10. Let and be mappings from to. Prove that if is invertible, then is onto and is one-to-one.arrow_forward
- 26. Let and. Prove that for any subset of T of .arrow_forward5. For each of the following mappings, determine whether the mapping is onto and whether it is one-to-one. Justify all negative answers. (Compare these results with the corresponding parts of Exercise 4.) a. b. c. d. e. f.arrow_forwardFor each of the following mappings f:ZZ, determine whether the mapping is onto and whether it is one-to-one. Justify all negative answers. a. f(x)=2x b. f(x)=3x c. f(x)=x+3 d. f(x)=x3 e. f(x)=|x| f. f(x)=x|x| g. f(x)={xifxiseven2x1ifxisodd h. f(x)={xifxisevenx1ifxisodd i. f(x)={xifxisevenx12ifxisodd j. f(x)={x1ifxiseven2xifxisoddarrow_forward
- Let f1(x)=3x and f2(x)=|x|. Graph both functions on the interval 2x2. Show that these functions are linearly dependent in the vector space C[0,1], but linearly independent in C[1,1].arrow_forward15. a. Show that the mapping given in Example 2 is neither onto nor one-to-one. b. For this mapping , show that if , then . c. For this same and , show that .arrow_forwardFor each of the following parts, give an example of a mapping from E to E that satisfies the given conditions. a. one-to-one and onto b. one-to-one and not onto c. onto and not one-to-one d. not one-to-one and not ontoarrow_forward
- Label each of the following statements as either true or false. 4. Let , , and be mappings from into such that . Then .arrow_forwardLet T be a linear transformation from R2 into R2 such that T(x,y)=(xcosysin,xsin+ycos). Find a T(4,4) for =45, b T(4,4) for =30, and c T(5,0) for =120.arrow_forwardFor the linear transformation from Exercise 45, let =45 and find the preimage of v=(1,1). 45. Let T be a linear transformation from R2 into R2 such that T(x,y)=(xcosysin,xsin+ycos). Find a T(4,4) for =45, b T(4,4) for =30, and c T(5,0) for =120.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning