Review Question 17.1 To decide whether an object is electrically charged, we need to observe its repulsion from some other objects, not its attraction. Why is attraction insufficient?
The reason behind attraction being an insufficient condition for deciding whether an object is electrically charged or not.
Answer to Problem 1RQ
Solution:
Attraction can exist between a charged and a neutral object also, due to the charging by induction. So, attraction is not sufficient to decide whether the object is charged or not. Repulsion cannot exist because of an induced charge so repulsion is a sufficient condition.
Explanation of Solution
Introduction:
There are various methods of charging an object, such as charging by friction, charging by induction, charging by conduction, and grounding.
Charging by induction is the method in which a neutral object is placed near the charged object and since there are electrons and protons in every atom of an object, they will either attract or repel each other. So, the positive (protons) and negative (electrons) charges that make a nucleus neutral, are separated by the presence of an external charged object. So, on one side there will be negatively charged electrons and on the other side there will be positively charged protons. This is called polarization of the object. The sides near the object of known charge (assume positive) will be of the opposite charge (negative) and vice versa. Neutral objects are attracted towards the charged object irrespective of the fact whether the charge is positive or negative.
Explanation:
Suppose a positively charged object is placed near a metal piece. Since electrons are loosely bound in the atoms of metals, electrons will move towards the face that is near the positively charged object. When electron leaves the atom, the atom will get positively charged. Since the face with the negative charge is near the positively charged object, the metal piece will be attracted towards the positively charged object.
To decide whether an object is electrically charged or not, the object needs to be placed near another object of known charge. If it is repelled by the object, then the first object could be of positive or negative charge. But, if the two objects are attracted to each other, it is not sufficient to decide because a charged object can induce a charge of the opposite sign on the neutral object. It means that the attraction between the objects can exist due to an induced charge. Thus, it will not be possible to decide whether the object was charged prior to the process, or charge has been induced by the second object.
Conclusion:
Therefore, repulsion is a sufficient condition for deciding whether an object is electrically charged or not.
Want to see more full solutions like this?
Chapter 17 Solutions
College Physics
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology: An Introduction
- Assume the charged objects in Figure OQ23.10 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 an charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1.arrow_forwardThere are very large numbers of charged particles in most objects. Why, then, don't most objects exhibit static electricity?arrow_forwardAssume the charged objects in Figure OQ19.15 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 on charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1. Figure OQ19.15arrow_forward
- Two small beads having positive charges q1 = 3q and q2 = q are fixed at the opposite ends of a horizontal insulating rod of length d = 1.50 m. The bead with charge q1 is at the origin. As shown in Figure P19.7, a third small, charged bead is free to slide on the rod. (a) At what position x is the third bead in equilibrium? (b) Can the equilibrium be stable?arrow_forwardFigure 18.47 shows the electric field lines near two charges q j and g2. What is the ratio of their magnitudes? (b) Sketch the electric field lines a long distance from the charges shown in the figure.arrow_forwardA sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forward
- (a) Two point charges q1 and q23.00 m apart, and their total charge is 20 C. (a) If the force of repulsion between them is 0.075N, what are magnitudes of the two charges? (b) If one charge attracts the other with a force of 0.150 N, what are the magnitudes of the two charges? Note that you may need to solve a quadratic equation to reach your answer.arrow_forward(a) By what factor must you change the distance between two point charges to change the force between them by a factor of 10? (b) Explain how the distance can either increase or decrease by this factor and still cause a factor of 10 change in the forcearrow_forwardA 1.75-nC charged particle located at the origin is separated by a distance of 0.0825 m from a 2.88-nC charged particle located farther along the positive x axis. Both particles are held at their locations by an external agent. a. What is the electrostatic force on the 2.88-nC particle? b. What is the electrostatic force on the 1.75-nC particle?arrow_forward
- (a) How strong is the attractive force between a glass rod with a 0.700 C charge and a silk cloth with a 0.600 C charge, which are 12.0 cm apart, using the approximation that they act like point charges? (b) Discuss how the answer to this problem might be affected if the charges are distributed over some area and do not act like point charges.arrow_forwardA common demonstration involves charging a rubber balloon, which is an insulator, by rubbing it on your hair and then touching the balloon to a ceiling or wall, which is also an insulator. Because of the electrical attraction between the charged balloon and the neutral wall, the balloon slicks to the wall. Imagine now that we have two infinitely large, Hat sheets of insulating material. One is charged, and the other is neutral, lf these sheets are brought into contact, does an attractive force exist between them as there was for the balloon and the wall?arrow_forward(a) What is the electric field 5.00 m from die center of the terminal of a Van de Graaff with a 3.00-mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00C charge on the Van de Graaff’s belt?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning