
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 14CQ
To determine
To explain: The difference between a magnet and a charged object. Also provide an explanation for the same.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
CH
57. A 190-g block is launched by compressing a spring of constant
k = = 200 N/m by 15 cm. The spring is mounted horizontally,
and the surface directly under it is frictionless. But beyond the
equilibrium position of the spring end, the surface has frictional
coefficient μ = 0.27. This frictional surface extends 85 cm, fol-
lowed by a frictionless curved rise, as shown in Fig. 7.21. After
it's launched, where does the block finally come to rest? Measure
from the left end of the frictional zone.
Frictionless
μ = 0.27 Frictionless
FIGURE 7.21 Problem 57
3. (a) Show that the CM of a uniform thin rod
of length L and mass M is at its center
(b) Determine the CM of the rod assuming its linear
mass density 1 (its mass per unit length) varies
linearly from λ = λ at the left end to double that
0
value, λ = 2λ, at the right end.
y
0
·x-
dx
dm=λdx
x
+
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all steps
Chapter 17 Solutions
College Physics
Ch. 17 - Review Question 17.1 To decide whether an object...Ch. 17 - Review Question 17.2 The model of charging by...Ch. 17 - Review Question 17.3 One cannot charge a held...Ch. 17 - Review Question 17.4 Two charged objects (1 and 2)...Ch. 17 - Review Question 17.5 How can we reduce the...Ch. 17 - Review Question 17.6
How would our reasoning in...Ch. 17 - Review Question 17.7 In a Van de Graaff generator,...Ch. 17 - Which of the following occurs when two objects are...Ch. 17 - 2. With which statements do you disagree?
a. If...Ch. 17 - 3. Which explanation agrees with the contemporary...
Ch. 17 - When an object gets charged by rubbing, where does...Ch. 17 - Choose all of the quantities that are constant in...Ch. 17 - Identically charged point-like objects A and B are...Ch. 17 - When separated by distance d, identically charged...Ch. 17 - Balloon A has charge q, and identical mass balloon...Ch. 17 - Imagine that two charged objects are the system of...Ch. 17 - Two objects with charges + q and -2q are separated...Ch. 17 - Charged point-like objects A and B are separated...Ch. 17 - 12. If you move a negatively charged balloon...Ch. 17 - 13. Describe the differences between the electric...Ch. 17 - Prob. 14CQCh. 17 - At one time it was thought that eclectic charge...Ch. 17 - 16. What experiments can you do to show that there...Ch. 17 - An object becomes positively charged due to...Ch. 17 - List everything that you know about electric...Ch. 17 - 19. What experimental evidence supports the idea...Ch. 17 - 20. You have an aluminum pie pan with pieces of...Ch. 17 - You have a charged metal ball. How can you reduce...Ch. 17 - 22. You have a foam rod rubbed with felt and a...Ch. 17 - A positively charged metal ball A is placed near...Ch. 17 - 24. Show that if the charge on B in the previous...Ch. 17 - 25. Two metal balls of the same radius are placed...Ch. 17 - 26. Describe the experiments that were first used...Ch. 17 - 27. The electrical force that one electric charge...Ch. 17 - 28. Why isn’t Coulomb's law valid for large...Ch. 17 - 29. How is electric potential energy similar to...Ch. 17 - BIO Ventricular defibrillation During ventricular...Ch. 17 - 2. * You rub two 2.0-g balloons with a wool...Ch. 17 - * Two balloons of different mass hang from strings...Ch. 17 - * Lightning A cloud has a large positive charge....Ch. 17 - 5. Sodium chloride (table salt) consists of sodium...Ch. 17 - * EST (a) Earth has an excess of 6105 electrons on...Ch. 17 - 7. Determine the electrical force that two protons...Ch. 17 - * Determine the number of electrons that must be...Ch. 17 - BIO Ions on cell walls The membrane of a body cell...Ch. 17 - * Hydrogen atom in a simplified model of a...Ch. 17 - * Three 100 nC charged objects are equally spaced...Ch. 17 - ** Tow objects with charges q and 4q are separated...Ch. 17 - * Salt crystal Four ions (Na+,Cl-,Na+,andCl-) in a...Ch. 17 - * A+106C charged object and a+2106C charged object...Ch. 17 - 15. **BIO Bee pollination Bees acquire an electric...Ch. 17 - 16. * A triangle with equal sides of length 10 cm...Ch. 17 - 17. You have a small metal sphere fixed on an...Ch. 17 - 18. * After the experiment in Problem 17.17, you...Ch. 17 - 20. (a) Determine the change in electric potential...Ch. 17 - You have a system of two positively charged...Ch. 17 - You have a system of two negatively charged...Ch. 17 - 23. Repeat (a)-(c) of Problem 17.22 for a system...Ch. 17 - The metal sphere on the top of a Van de Graaff...Ch. 17 - * EST An electron is 0.10 cm from an object with...Ch. 17 - * (a) An object with charge q4=+3.010-9C is moved...Ch. 17 - 27. * An object with charge is moved from...Ch. 17 - +8nCandq2=4nC are placed at marks...Ch. 17 - 29. * Two small objects with charges + Q and -Q...Ch. 17 - 30. * A stationary block has a charge of . A...Ch. 17 - Figure P17.31 shows four different configurations...Ch. 17 - * Evaluate the solution Metal sphere 1 has charge...Ch. 17 - 37. * Construct separate force diagrams for each...Ch. 17 - 38. “ The six objects shown in Figure P17.38 have...Ch. 17 - * A small metal ball with positive charge + q and...Ch. 17 - 40. * Four objects each with charge are located...Ch. 17 - 41. * Two 5.0-g aluminum foil balls hang from...Ch. 17 - 42. * A 6.0-g ball with charge hangs from a...Ch. 17 - * A 0.40-kg cart with charge +4.010-8C starts at...Ch. 17 - A dust particle has an excess charge of 4106...Ch. 17 - Electric accelerator A micro-transporter moves...Ch. 17 - * You are holding at rest a small sphere A with...Ch. 17 - * A Van de Graaff generator is placed in rarefied...Ch. 17 - 48. * Two protons each of mass and charge +e are...Ch. 17 - 49. * Two protons, initially separated by a very...Ch. 17 - * An alpha particle consists of two protons and...Ch. 17 - * Determine the speed that the proton shown in...Ch. 17 - 52. ** Suppose that Earth and the Moon initially...Ch. 17 - 53. * BIO Calcium ion synapse transfer Children...Ch. 17 - 54. A small ball D has a charge of and cannot...Ch. 17 - 55. *Two small balls A and B with equal charges +...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your clothes from the dryer...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forwardRocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forward
- microwavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forwardRefer to the image attachedarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forwardA straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forward
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College