
Review Question 17.1 To decide whether an object is electrically charged, we need to observe its repulsion from some other objects, not its attraction. Why is attraction insufficient?

The reason behind attraction being an insufficient condition for deciding whether an object is electrically charged or not.
Answer to Problem 1RQ
Solution:
Attraction can exist between a charged and a neutral object also, due to the charging by induction. So, attraction is not sufficient to decide whether the object is charged or not. Repulsion cannot exist because of an induced charge so repulsion is a sufficient condition.
Explanation of Solution
Introduction:
There are various methods of charging an object, such as charging by friction, charging by induction, charging by conduction, and grounding.
Charging by induction is the method in which a neutral object is placed near the charged object and since there are electrons and protons in every atom of an object, they will either attract or repel each other. So, the positive (protons) and negative (electrons) charges that make a nucleus neutral, are separated by the presence of an external charged object. So, on one side there will be negatively charged electrons and on the other side there will be positively charged protons. This is called polarization of the object. The sides near the object of known charge (assume positive) will be of the opposite charge (negative) and vice versa. Neutral objects are attracted towards the charged object irrespective of the fact whether the charge is positive or negative.
Explanation:
Suppose a positively charged object is placed near a metal piece. Since electrons are loosely bound in the atoms of metals, electrons will move towards the face that is near the positively charged object. When electron leaves the atom, the atom will get positively charged. Since the face with the negative charge is near the positively charged object, the metal piece will be attracted towards the positively charged object.
To decide whether an object is electrically charged or not, the object needs to be placed near another object of known charge. If it is repelled by the object, then the first object could be of positive or negative charge. But, if the two objects are attracted to each other, it is not sufficient to decide because a charged object can induce a charge of the opposite sign on the neutral object. It means that the attraction between the objects can exist due to an induced charge. Thus, it will not be possible to decide whether the object was charged prior to the process, or charge has been induced by the second object.
Conclusion:
Therefore, repulsion is a sufficient condition for deciding whether an object is electrically charged or not.
Want to see more full solutions like this?
Chapter 17 Solutions
College Physics
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology: An Introduction
- Don't use ai to answer I will report you answerarrow_forwardwhy did the expert subtract the force exerted by the hand and the elbow by the force due to the weight of the hand and forearm and force exerted by the tricep. Does the order matter and how do you determine what to put first. Question 4 AP, CHAPTER 13 FROM BASIC BIOMECHANICS 8TH EDITIONarrow_forwardThe drawing illustrates the dispersion of light by a prism. The prism is made from a certain type of glass, and has a cross section shaped like an equilateral triangle. The indices of refraction for the red and violet light in this type of glass are 1.649 and 1.694, respectively. The angle of incidence for both the red and violet light is 60.0°. Find the angles of refraction at which the (a) red and (b) violet rays emerge into the air from the prism. Glass prism Incident light Normal (a) Normal Incident light Red (660 nm) (b) Violet (410 nm)arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA glass block (n = 1.56) is immersed in a liquid. A ray of light within the glass hits a glass- liquid surface at a 70.0° angle of incidence. Some of the light enters the liquid. What is the smallest possible refractive index for the liquid?arrow_forwardThe drawing shows a crystalline slab (refractive index 1.995) with a rectangular cross section. A ray of light strikes the slab at an incident angle of 01 = 35.0°, enters the slab, and travels to point P. This slab is surrounded by a fluid with a refractive index n. What is the maximum value of n such that total internal reflection occurs at point P? Ме Buarrow_forward
- What is the amount of M112 needed to breach a 5-foot thick dense concrete wall utilizing an internal charge placed in the center of the target?arrow_forwardA small postage stamp is placed in front of a concave mirror (radius = 1.1 m), such that the image distance equals the object distance. (a) What is the object distance? (b) What is the magnification of the mirror (with the proper sign)?arrow_forwardCalculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers. Record these values in Data Table 5. Ruler = 11.56 g, small washer = 1.85 g, large washer = 24.30 g. Calculate the % Difference in the Torques and record the values in Data Table 5. Is ΣAnticlockwise torque and Anticlockwise torque the same thing, are they solved in the same way?arrow_forward
- A window washer stands on a uniform plank of mass M = 142 kg and length l = 2.80 m supported by 2 ropes attached at the ends of the plank. The window washer has a mass m = 68.0 kg. What is the tension in each of the ropes, T1 and T2, if the window washer's displacement from the center of mass of the plank is x = 0.930 m as shown in Figure 1: Window Washer Problem?arrow_forwardA man holds a double-sided spherical mirror so that he is looking directly into its convex surface, 33 cm from his face. The magnification of the image of his face is +0.17. What will be the image distance when he reverses the mirror (looking into its concave surface), maintaining the same distance between the mirror and his face? Be sure to include the algebraic sign (+ or -) with your answer.arrow_forwardHow do you draw a diagram of the ruler and mass system in equilibrium identifying the anti-clockwise torque and clockwise torque? How do I calculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers, does it come from the data in table 4? Please help, thank you!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





