(a)
To explain:
The difference between oxidation and reduction electrochemical reactions:
(a)
Answer to Problem 1QAP
The difference between oxidation and reduction electrochemical reactions is explained as below:
Explanation of Solution
Electrochemical reaction is the process that involves electron transfer between two substances mostly a metal and an electrolyte. It includes oxidation and reduction reactions that occur simultaneously. Oxidation reaction involves loss of electrons by a molecule or an atom to form a cation. This causes increase in oxidation state. Reduction reaction involves gain of electrons by an atom to form an anion. This causes decrease in oxidation state. Thus, the basic difference between oxidation and reduction electrochemical reaction involve loss and gain of electrons in an atom, respectively.
(b)
To explain:
Which reaction (oxidation and reduction) occurs at anode and which at the cathode?
(b)
Answer to Problem 1QAP
The reaction (oxidation and reduction) occurs at anode and at the cathode is explained as below.
Explanation of Solution
Oxidation and reduction reactions occur at electrodes. Anode refers to negative electrode and cathode refers to positive electrode. Oxidation takes place at the anode as it involves loss of electrons. Reduction takes place at the cathode as it involves gain of electrons.
Want to see more full solutions like this?
Chapter 17 Solutions
Materials Science And Engineering
- Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardEnumerate the various methods for catalyst preparation and discuss vividly any one of the methodsarrow_forward2. Design a spherical tank, with a wall thickness of 2.5 cm that will ensure that no more than 45 kg of hydrogen will be lost per year. The tank, which will operate at 500 °C, can be made from nickel, aluminum, copper, or iron (BCC). The diffusion coefficient of hydrogen and the cost per pound for each available material is listed in Table 1. Material Do (m2/s) Q (J/mol) Cost ($/kg) Nickel 5.5 x 10-7 37.2 16.09 Aluminium 1.6 x 10-5 43.2 2.66 Copper 1.1 x 10-6 39.3 9.48 Iron (BCC) 1.2 × 10-7 15.1 0.45 Table 1: Diffusion data for hydrogen at 500 °C and the cost of material.arrow_forward
- If Va = 12V, Ve = 0V, R1= 10 Ohms, and R2=R3=5 Ohms, solve all currents, i, and voltages, V in the circuit.arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardanswer shoul avoid using AI and should be basic and please explainarrow_forward* 7.29 The current source in the circuit of Fig. P7.29 is given by is(t) = 12 cos(2л × 10¹t — 60°) mA. - Apply the phasor-domain analysis technique to determine ic(t), given that R= 20 2 and C = 1 μF.arrow_forward
- A1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPROBLEMS 7.33 Find ia(t) in the circuit of Fig. P7.33, given that Us(t) = 40 sin(200t -20°) V.arrow_forwardNode A is connected to node B by a 2000km fiber link having a bandwidth of 100Mbps. What is the total latency time (transmit + propagation) required to transmit a 4000 byte file using packets that include 1000 Bytes of data plus 40 Bytes of header.arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY