
Concept explainers
(a)
Calculate the Fourier transform of the function shown in the given Figure.
(a)

Answer to Problem 1P
The Fourier transform for the function given in Figure is
Explanation of Solution
Given data:
Refer to Figure given in the textbook.
Formula used:
Write the general expression for the function
Write the general expression for definite integral
Calculation:
In the given Figure, the function
The end points of the function
The slope of the straight line is calculated as follows,
Substitute
Therefore, for the given Figure, the function
Applying equation (3) in equation (2) as follows,
Consider,
Write the general expression for integration by parts method as follows,
By applying integration by parts to equation (5),
Applying equation (6) in equation (5) as follows,
Consider,
Consider,
Substitute
Substitute equation (9) in equation (7) as follows,
The above equation as follows,
Substitute equation (10) in equation (4), and applying the limits as follows,
Conclusion:
Thus, the Fourier transform for the function given in Figure is
(b)
Calculate
(b)

Answer to Problem 1P
The function
Explanation of Solution
Given data:
Refer to Part (a).
Formula used:
Write the general expression for L’Hospital’s rule as follows,
Calculation:
Applying equation (12) to equation (11) when
The above equation becomes,
Conclusion:
Thus, the function
(c)
Plot
(c)

Answer to Problem 1P
The sketch for
Explanation of Solution
Given data:
Refer to Part (a),
Calculation:
Appling
Create a table as shown in below Table 1.
Table 1
Angular Frequency | Function |
–200 | 0.0785 |
–190 | 0.1041 |
–180 | 0.1063 |
–170 | 0.0819 |
–160 | 0.0336 |
–150 | 0.0295 |
–140 | 0.0943 |
–130 | 0.1452 |
–120 | 0.1678 |
–110 | 0.1522 |
–100 | 0.0951 |
–90 | 0.0014 |
–80 | 0.1161 |
–70 | 0.2389 |
–60 | 0.3457 |
–50 | 0.4162 |
–40 | 0.4354 |
–30 | 0.3962 |
–35 | 0.3012 |
–15 | 0.1625 |
0 | 5.0000 (Original value is infinity, though for the instance consider one finite value as 5) |
10 | 0.1625 |
20 | 0.3012 |
30 | 0.3962 |
40 | 0.4354 |
50 | 0.4162 |
60 | 0.3457 |
70 | 0.2389 |
80 | 0.1161 |
90 | 0.0014 |
100 | 0.0951 |
110 | 0.1522 |
120 | 0.1678 |
130 | 0.1452 |
140 | 0.0943 |
150 | 0.0295 |
160 | 0.0336 |
170 | 0.0819 |
180 | 0.1063 |
190 | 0.1041 |
200 | 0.0785 |
Sketch the plot for various values of function
Conclusion:
Thus, the sketch for
Want to see more full solutions like this?
Chapter 17 Solutions
EBK ELECTRIC CIRCUITS
- Please show all the steps!arrow_forward10-3) similar to Lathi & Ding, Prob. P.6.3-7 The Fourier transform P(f) of a the basic pulse p(t) used in a certain binary communication is shown in the figure below: P(f) 1 0.5 0 f₁ = 0.8 √₂ = 1.2 f, MHz (a) From the shape of P(f), explain at what pulse rate this pulse would satisfy Nyquist's first criterion. (b) Assuming that the pulse is a raised-cosine pulse, find its rolloff factor. (c) Find p(t) and verify that this pulse satisfies Nyquist's first criterion in the time domain. (d) Show how rapidly the pulse decays as a function of t, (i.e., what power of t does the envelope obey for large time values).arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forwardChoose the correct answer for from the following sentences: 1. The purpose of the microprocessor is to control b. memory c. processing d. tasks a. switches 2. Which of the following instructions represents base-plus-index addressing mode? a. MOV AL,[BX] b. MOV AL,[SI] c. MOV AL,BX d. MOV AL,[BX+SI] 3. The BIU pre-fetches the instruction from memory and store them in b. memory c. stack d. queue a. register 4. Which function is used to control the PWM (Pulse Width Modulation) on the Arduino output pin? a. digitalRead() b. analogRead() c. digitalWrite() 5. Which port in the PIC16F877A has an 8 external interrupt inputs? a. Port-A b. Port-C c. Port-B d. analogWrite() d. Port-D d. 4KByte 6. How much Flash EEPROM memory program found in the PIC16F877A microcontroller? a. 32KByte b. 16KByte c. 8KBytearrow_forward
- Solve and select the correct answer: 2. For a random variable X with pdf: p(x) value of x is = 119 10 for -5≤x≤5. The mean (a) -75 (b) 10 (c) 0 (d) 75 3. Is the matrix A = = [1] orthogonal? Find the rank of A? 0 (a) YES, -1 (b) NO, 2 (c) YES, 2 (d) NO, -1 4. L{et sin(3t)u(t)) = (a) s-3 (s-2)²+9 2 (b) (5-3)² (c) (s-3)²+4 S-2 3 (s-2)²+9 (d) (5-2)²+9 = 5. Given that x is a constant. Choose all the correct solutions for [∞ (AB)] = (a) (AB)T (b) x ATBT (c) α BTAT (d) x (AB)Tarrow_forwardDO NOT WANT AI WILL REJECTarrow_forward3. Roughly sketch the root locus for the following locations of open-loop poles and zeros. You just need to show the shape of the root locus; you do not calculate the asymptote, break-in, and break-away points. ☑ (a) (b) ☑ Φ ① $3 (c)arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





