Concept explainers
Explain the greenhouse effect. Is a greenhouse a good analogy for Earth’s atmosphere? Explain.
The explanation for the greenhouse effect and positive assumptions about it for Earth’s atmosphere.
Answer to Problem 1CQ
The absorption of solar energy and reemitted infrared energy results in heating of the atmosphere. This is known as the greenhouse effect. The belief that it is good for the atmosphere is misleading. Trapping of greenhouse gases increases the temperature which is not good for the survival of all the species.
Explanation of Solution
Trapping of certain gases known as greenhouse gases leads to trapping of solar energy in the atmosphere. In normal conditions, the solar energy enters into the atmosphere, some of it is absorbed and rest escapes from it, but in the greenhouse effect, the emitted energy or infrared radiation does not escape from the atmosphere resulting in an increase in temperature. If the process continues then, it will lead to a consistent increase in the temperature of Earth. This effect is known as the greenhouse effect because in a greenhouse the solar energy can enter into the greenhouse glass, but the emitted radiations cannot escape the glass leading to an increase in temperature of the greenhouse.
The belief that the greenhouse effect is good is misleading. The greenhouse gases do not exactly trap the radiations. In fact, they undergo dynamic absorption and emission process. Increase in greenhouse gases will increase the temperature, but this is not true for the greenhouse as increasing glass layers does not increase the temperature. Therefore, the greenhouse effect cannot prove to be beneficial for the Earth’s atmosphere.
Want to see more full solutions like this?
Chapter 17 Solutions
Integrated Science
- This is a multi-part problem. For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardBlue light has a wavelength of 485 nm. What is the frequency of a photon of blue light? Question 13 Question 13 What is the wavelength of radiofrequency broadcast of 104 MHz? Question 14 Question 14 1 Point 3. The output intensity from an x-ray exposure is 4 mGy at 90 cm. What will the intensity of the exposure be at 180 cm? Question 15 Question 15 1 Point What is the frequency of an 80 keV x-ray?arrow_forwardUnder what condition is IA - BI = A + B? Vectors À and B are in the same direction. Vectors À and B are in opposite directions. The magnitude of vector Vectors À and 官 B is zero. are in perpendicular directions.arrow_forward
- For the vectors shown in the figure, express vector 3 in terms of vectors M and N. M S =-M+ Ň == S=м- Ñ S = M +Ñ +Narrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forwardIf A - B = 0, then the vectors A and B have equal magnitudes and are directed in the opposite directions from each other. True Falsearrow_forward
- If the eastward component of vector A is equal to the westward component of vector B and their northward components are equal. Which one of the following statements about these two vectors is correct? Vector À is parallel to vector B. Vectors À and point in opposite directions. VectorÀ is perpendicular to vector B. The magnitude of vector A is equal to the magnitude of vectorarrow_forwardThe magnitude of a vector can never be less than the magnitude of one of its components. True Falsearrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt plsarrow_forwardConsider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball. B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning