Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.9P
To determine
Find the settlement of the foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1: A shallow foundation 25m × 18 m carries a uniform pressure of 175 kPa.
Determine the vertical stress at two points that are 12 m and 24 m below the mid-point of
one of the long sides, respectively.
(a) using influencing factors
(b) by means of Newmark's chart
(c) using the 2:1 method
(c) Comment on the results of the 2:1 method by comparing with those of the other
two methods.
A rectangular footing is uniformly loaded with q = 75 kN/m? as shown
in the figure. Compute the vertical stress increments under Points A, B,
and C at z = 5 m.
15 m
3.5 m
A
1.87 m
8 m
B
Footing
(Plane view)
Please solve this detailed step by step
Chapter 17 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1) For a shallow foundation measuring (1.7 m x 2.2 m) as shown below: , A. Estimate the elastic settlement proposed by Mayerhof. Then, B. Estimate the elastic settlement proposed by Bowles, if the water table rises 1.5 m. Then, Use yw=10 kN/m³ qnet= 1.2 MN/m2 G.S 1.5 m Sand Yd=16 kN/m³ Ysat= 17 kN/m3 %3D 2.5 m N60=52 V W.T. Silty Sand Ya=18 kN/m³ Ysat = 18.5 kN/m? N60=52 3.5 m Sand Ya=19 kN/m3 Ysat = 22 kN/m³ e, = 0.4, Ae=0.04 , o'= 194 kN/m2 5 m Cc= 0.3, Cs= 0.2 , Ca= 0.05 N60=60 CS Scanned with CamScannerarrow_forward(foundation engineering)arrow_forwardSolve Problem 7.8 using Eq. (7.29). Ignore the post-construction settlement. 7.8 Solve Problem 7.4 with Eq. (7.20). Ignore the correction factor for creep. For the unit weight of soil, use γ = 115 lb/ft3. 7.4 Figure 7.3 shows a foundation of 10 ft × 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 lb/ft2. For the sand, μs = 0.3, Es = 3200 lb/in.2, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. Use Eqs. (7.4) and (7.12).arrow_forward
- Figure 16.21 shows a continuous foundation with a width of 1.8 m constructed at a depth of 1.2 m in a granular soil. The footing is subjected to an eccentrically inclined loading with e = 0.3 m, and = 10. Determine the gross ultimate load, Qu(ei), that the footing can support using: a. Meyerhof (1963) method [Eq. (16.52)] b. Saran and Agarwal (1991) method [Eq. (16.53)] c. Patra et al. (2012) reduction factor method [Eq. (16.54)]arrow_forwardplz answer asaparrow_forwardFigure 5 summarizes the loading on two footings. What will be the increase in thevertical stress (Licrv) at point A which is located in the middle of two foundations and is 2meters deep from the ground surface? Calculation should be performed using twodifferent methods.arrow_forward
- Refer to Figure 5.12. For a rectangular foundation on layered sand, given:●● B = 4 ft, L = 6 ft, H = 2 ft, Df = 3 ft●● γ1 = 98 lb/ft3, Φ'1 = 30º, c'1 = 0●● γ2 = 108 lb/ft3, Φ'2 = 38º, c'2 = 0Using a factor of safety of 4, determine the gross allowable load the foundation can carry.arrow_forwardProb. 3) Referring to the figure below: A) Compute the average increase in stress Ao below the centre of the footing for the clay layer 2. B) Compute the elastic settlement of the clay assuming a shallow foundation. OCR=3, P.I-30%, C-120 kPa, us=0.5. P= 1350 kN G.S. ydry= 17.7 kN/m³ 3 m Clay1 3.mx6 m. 2 m W.T. 2 m ysat= 20 kN/m3 4 m Clay2 ysat= 21 kN/m3 Rigid rock CS Scanned with CamScannerarrow_forwardThe initial principal stresses at a certain depth in a clay soil are 200 kPa on the horizontal plane and 100 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral (horizontal) stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. Determine (a) the change in magnitude of the principal stress, (b) the change in maximum shear stress, and (c) the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forward
- Subject : Geotechnical Engineering Df=5ft, B=2ft, H=10ft, and Es=5000 psi, q=200 psf Determine the elastic settlement of a square foundation on saturated clay layer.arrow_forwardPlease solve this question. Q. No. 1: A foundation 4x4 m is located at a depth of 1 m in a layer of saturated clay 13 m thick. Characteristic Parameters for the clay are cu=100 kN/m2, u=0, c'=0, '=32o, Cc=0.36, eo=0.784, NCC, sat=21 kN/m3. Determine the design load of the foundation to ensure (a) a factor of safety with respect to shear failure of 3 using the traditional method, (b) consolidation settlement does not exceed 30 mm.arrow_forwardA 8 m layer of sand, of saturated unit weight 22 kN/m3, overlies a 6 m layer of clay, of saturated unit weight 27 kN/m3. A foundation carrying 1200 KN load is to be founded on the soil layer. If the clay is normally consolidated and the increase in effective pressure due to the foundation load at the center of clay is 27 kN/m2, Soil parameters are Cc = 0.25, eo = 1.0. Assume required data •Draw the soil profile diagram in detail, mentioning all the soil properties with the foundation details. •Calculate the consolidation settlement at the center of the clay layer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License