CHEMISTRY >CUSTOM<
CHEMISTRY >CUSTOM<
8th Edition
ISBN: 9781309097182
Author: SILBERBERG
Publisher: MCG/CREATE
bartleby

Videos

Question
Book Icon
Chapter 17, Problem 17.86P
Interpretation Introduction

Interpretation:

The number of grams of H2 present at equilibrium has to be calculated for the given reaction.

  H2(g)+ CO2(g)H2O(g)+ CO(g)

Given information is a chemist introduces 2.0 atm of H2 and 2.0 atm of CO2 into a 1.00-L container at 25.0°C and then raises the temperature to 700°C at which Kc= 0.534.

Concept Introduction:

Equilibrium constant:

The relationship between the concentration of products and concentration of reactants in a chemical reaction at equilibrium is said to be equilibrium constant.  It is denoted by K.

For a reaction,

  xX + yY  zZ

The expression of K can be given as

  Kc = [Z]z[X]x[Y]ywhere, [X] = equilibrium concentration of X [Y] = equilibrium concentration of Y [Z] = equilibrium concentration of Z

Moles can be calculated using ideal gas equation.

  PV =nRTP    =(nV)RT nV=MP    =MRTM   =PRTwhere, P = Pressure R = universal gas constant T = temperature M = number of moles

Blurred answer
Students have asked these similar questions
Recent advancements in liquid chromatography include the development of ultrahigh pressure liquid chromatography (UHPLC) and an increased use of capillary columns that had previously only been used with gas chromatography. Both of these advances have made the development of portable LC systems possible. For example, Axcend Corp. makes a portable system that uses a capillary column with an internal diameter of 150-μm-that is packed with 1.7-um stationary phase particles. In contrast, a traditional LC column has a 4.6 mm internal diameter and utilizes 5-um stationary phase particles. a) Explain one advantage that is afforded by the use of a capillary column in liquid chromatographic separation. Explain one disadvantage of capillary columns. b) Explain how the use of smaller stationary phase particles can improve the resolution of a separation. Include any relevant equations that support your explanation. c) A scientist at Rowan University is using the Axcend LC to conduct analyses of F…
This paper describes the use of fullerene molecules, also known as buckyballs, as a stationary phase for liquid chromatography. The performance of the fullerene-modified stationary phase (FMS) is compared to that of a more common C18 stationary phase and to two other carbon-based stationary phases, PGC and COZ. A. 10A OM B. - Figure 1. Idealized drawing of the cross-section of a pore inside a silica particle, showing the relative densities of aminopropylsilyl (red/green) and fullerene (blue) groups: (A) full cross- section; (B) detailed view of covalent bonding of fullerene to the silica surface. Surface densities of silyl and fullerene groups were inferred from elemental composition results obtained at each stage of the synthesis (see Table 1). Absorbance (mAU, 220 nm) 700 600 500 400 300 200 100 a. Define selectivity, a, with words and an equation. b. Explain how the choice of stationary phase affects selectivity. c. Calculate the resolution of the nitrobenzene and toluene peaks in…
Normalized Intensity (a. u.) 0.5 1.0 A 3D-printed GC column (shown below) was created for use with "micro" gas chromatography applications. To prove its utility, it was used to separate a mixture of alkanes (C9-C18, C22, C24). For the separation shown below, the column temperature was ramped from 40 °C to 250 °C at a rate of 30 °C per minute. (a) 9 10 = 1 mm 12 13 15 22 0.0 0 100 200 300 400 Time (sec) a) What detector would you use for this analysis? Justify your selection. b) Explain how the chromatogram would change if the separation was run isothermally. c) Explain how the chromatogram would change if the temperature ramp were increased to 50 °C per minute.

Chapter 17 Solutions

CHEMISTRY >CUSTOM<

Ch. 17.5 - Prob. 17.6AFPCh. 17.5 - Prob. 17.6BFPCh. 17.5 - Prob. 17.7AFPCh. 17.5 - Prob. 17.7BFPCh. 17.5 - Prob. 17.8AFPCh. 17.5 - Prob. 17.8BFPCh. 17.5 - Prob. 17.9AFPCh. 17.5 - Prob. 17.9BFPCh. 17.5 - An inorganic chemist studying the reactions of...Ch. 17.5 - A chemist studying the production of nitrogen...Ch. 17.6 - In a study of glass etching, a chemist examines...Ch. 17.6 - Prob. 17.11BFPCh. 17.6 - Prob. 17.12AFPCh. 17.6 - Prob. 17.12BFPCh. 17.6 - Prob. 17.13AFPCh. 17.6 - Should T be increased or decreased to yield more...Ch. 17.6 - Prob. 17.14AFPCh. 17.6 - Prob. 17.14BFPCh. 17.6 - Many metabolites are products in branched...Ch. 17 - Prob. 17.1PCh. 17 - When a chemical company employs a new reaction to...Ch. 17 - If there is no change in concentrations, why is...Ch. 17 - Prob. 17.4PCh. 17 - Prob. 17.5PCh. 17 - Prob. 17.6PCh. 17 - Prob. 17.7PCh. 17 - Prob. 17.8PCh. 17 - Prob. 17.9PCh. 17 - Does Q for the formation of 1 mol of NO from its...Ch. 17 - Does Q for the formation of 1 mol of NH3 from H2...Ch. 17 - Balance each reaction and write its reaction...Ch. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - At a particular temperature, Kc = 1.6×10−2...Ch. 17 - Prob. 17.17PCh. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - When are Kc and Kp equal, and when are they not? Ch. 17 - A certain reaction at equilibrium has more moles...Ch. 17 - Prob. 17.28PCh. 17 - Determine Δngas for each of the following...Ch. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - The following molecular scenes depict the aqueous...Ch. 17 - At 425°C, Kp = 4.18 × 10−9 for the...Ch. 17 - At 100°C, Kp = 60.6 for the reaction 2NOBr(g) ⇌...Ch. 17 - The water-gas shift reaction plays a central role...Ch. 17 - In the 1980s, CFC-11 was one of the most heavily...Ch. 17 - For a problem involving the catalyzed reaction of...Ch. 17 - What is the basis of the approximation that avoids...Ch. 17 - Prob. 17.42PCh. 17 - Gaseous ammonia was introduced into a sealed...Ch. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Nitrogen dioxide decomposes according to the...Ch. 17 - Hydrogen iodide decomposes according to the...Ch. 17 - Compound A decomposes according to the...Ch. 17 - In an analysis of interhalogen reactivity, 0.500...Ch. 17 - A toxicologist studying mustard gas, S(CH2CH2Cl)2,...Ch. 17 - Prob. 17.56PCh. 17 - A key step in the extraction of iron from its ore...Ch. 17 - What does “disturbance” mean in Le Châtelier’s...Ch. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Le Châtelier’s principle is related ultimately to...Ch. 17 - An equilibrium mixture of two solids and a gas, in...Ch. 17 - Consider this equilibrium system: CO(g) + Fe3O4(s)...Ch. 17 - Sodium bicarbonate undergoes thermal decomposition...Ch. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Predict the effect of decreasing the container...Ch. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - The formation of methanol is important to the...Ch. 17 - Prob. 17.76PCh. 17 - The oxidation of SO2 is the key step in H2SO4...Ch. 17 - A mixture of 3.00 volumes of H2 and 1.00 volume of...Ch. 17 - You are a member of a research team of chemists...Ch. 17 - For the following equilibrium system, which of the...Ch. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.85PCh. 17 - Prob. 17.86PCh. 17 - Prob. 17.87PCh. 17 - Prob. 17.88PCh. 17 - When 0.100 mol of CaCO3(s) and 0.100 mol of CaO(s)...Ch. 17 - Prob. 17.90PCh. 17 - Prob. 17.91PCh. 17 - Prob. 17.92PCh. 17 - Highly toxic disulfur decafluoride decomposes by a...Ch. 17 - A study of the water-gas shift reaction (see...Ch. 17 - Prob. 17.95PCh. 17 - Prob. 17.96PCh. 17 - Prob. 17.97PCh. 17 - Prob. 17.98PCh. 17 - Prob. 17.99PCh. 17 - Prob. 17.100PCh. 17 - The molecular scenes below depict the reaction Y ⇌...Ch. 17 - For the equilibrium H2S(g) ⇌ 2H2(g) + S2(g) Kc =...Ch. 17 - Prob. 17.103PCh. 17 - Prob. 17.104PCh. 17 - The kinetics and equilibrium of the decomposition...Ch. 17 - Isopentyl alcohol reacts with pure acetic acid to...Ch. 17 - Isomers Q (blue) and R (yellow) interconvert. They...Ch. 17 - Glauber’s salt, Na2SO4·10H2O, was used by J. R....Ch. 17 - Prob. 17.109PCh. 17 - Synthetic diamonds are made under conditions of...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY