Concept explainers
(a)
The frequency heard by the passengers in the car.
(a)
Answer to Problem 17.71CP
The frequency heard by the passengers in the car is
Explanation of Solution
Given info: The speed of the train is
Consider the following figure.
Figure (1)
In right angle triangle
Substitute
The value of the
In triangle
Substitute
The value of the
The expression for the frequency heard by the passengers in the car is,
Here,
Substitute
Conclusion:
Therefore the frequency heard by the passengers in the car is
(b)
The range of frequencies heard by the passenger in the car.
(b)
Answer to Problem 17.71CP
The range of frequencies heard by the passenger in the car is
Explanation of Solution
Given info: The speed of the train is
Since the observer and source are moving away from each other so the value of the angles becomes equal to zero.
The expression for the frequency heard by the passengers in the car is,
For the case when the train is arrived:
Substitute
For the case when train is arriving:
Substitute
Conclusion:
Therefore the range of frequencies heard by the passenger in the car is
(c)
The frequency heard by the passengers in the car.
(c)
Answer to Problem 17.71CP
The frequency heard by the passengers in the car is
Explanation of Solution
Given info: The speed of the train is
The expression for the frequency heard by the passengers in the car is,
Substitute
Conclusion:
Therefore the frequency heard by the passengers in the car is
Want to see more full solutions like this?
Chapter 17 Solutions
PHYSICS 1250 PACKAGE >CI<
- (a) Seismographs measure the arrival times of earthquakes with a precision of 0.100 s. To get the distance to the epicenter of the quake, geologists compare the arrival times of S- and P-waves, which travel at different speeds. If S- and P-waves travel at 4.00 and 7.20 km/s, respectively, in the region considered, how precisely can the distance to the source of the earthquake be determined? (b) Seismic waves from underground detonations of nuclear bombs can be used to locate the test site and detect violations of test bans. Discuss whether your answer to (a) implies a serious limit to such detection. (Note also that the uncertainty is greater if there is an uncertainty in the propagation speeds of the S- and P-waves.)arrow_forwardAn astronomer measures the speed of recession of a remote galaxy to be 365 km/s using the Doppler principle According to the Hubble relation, about how far away is the galaxy?arrow_forwardThe Doppler shift for a Doppler radar is found by f=fR(1+vc1vc) , where fR is the frequency of the radar, f is the frequency observed by the radar, c is the speed of light, and v is the speed of the target. What is the beat frequency observed at the radar, assuming the speed of the target is much slower than the speed of light?arrow_forward
- During a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forwardWhat kind of motion for a star does not produce a Doppler effect? Explain.arrow_forwardA sound wave is modeled with the wave function P=1.20Pasin(kx6.28104s1t) and the sound wave travels in air at a speed of v=343.00 m/s. (a) What is the wave number of the sound wave? (b) What is the value for P(3.00 m, 20.00 s)?arrow_forward
- Energy from the Sun arrives at the top of Earth’s atmosphere with an intensity of 1400 W/m2. How long does it take for 1.80109 J to arrive on an area of 1.00 m2?arrow_forwardWind gusts create ripples on the ocean that have a wavelength at 5.00 cm and propagate at 2.00m/s. What is their frequency?arrow_forwardA Girl Scout is taking a 10.00-km hike to earn a merit badge. While on the hike, she sees a cliff some distance away. She wishes to estimate the time required to walk to the cliff. She knows that the speed of sound is approximately 343 meters per second. She yells and finds that the echo returns after approximately 2.00 seconds. If she can hike 1.00 km in 10 minutes, how long would it take her to reach the cliff?arrow_forward
- A physicist a1 a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.400 s. (a) How far away is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? (b) Calculate the distance to the explosion taking the speed of light into account. Note that this distance is negligibly greater.arrow_forwardA cowboy stands on horizontal ground between two parallel, vertical clifTs. He is not midway between the cliffs. Me fires a shot and hears its echoes. The second echo arrives 1.92 s after the first and 1.47 s before the third. Consider only the sound traveling parallel to the ground and reflecting from the cliffs, (a) What is the distance between the cliffs? (b) What If? If he can hear a fourth echo, how long after the third echo does it arrive?arrow_forwardWhat is wrong with the following expressions? How can you correct them? (a) C=AB , (b) C=AB , (c) C=AB , (d) C=AB , (e) C+2A=B , (f) C=AB , (g) AB=AB , (h) C=2AB , (i) C=A/B , and (j) C=A/B .arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College